Intramyocardial Injection of Hypoxia-Conditioned Extracellular Vesicles Increases Myocardial Perfusion in a Swine Model of Chronic Coronary Disease

Dwight D. Harris, MD, Sharif A. Sabe, MD, Mark Broadwin, MD, Christopher Stone, MD, Cynthia Xu, MD, Meghamsh Kanuparthi, MD, Akshay Malhotra, M. Ruhul Abid, MD, PhD, Frank W. Sellke, MD, FACS

PII: S2666-2736(24)00161-X
DOI: https://doi.org/10.1016/j.xjon.2024.06.003
Reference: XJON 1085

To appear in: JTCVS Open

Received Date: 25 March 2024
Revised Date: 21 May 2024
Accepted Date: 10 June 2024

Please cite this article as: Harris DD, Sabe SA, Broadwin M, Stone C, Xu C, Kanuparthi M, Malhotra A, Abid MR, Sellke FW, Intramyocardial Injection of Hypoxia-Conditioned Extracellular Vesicles Increases Myocardial Perfusion in a Swine Model of Chronic Coronary Disease, JTCVS Open (2024), doi: https://doi.org/10.1016/j.xjon.2024.06.003.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2024 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Title: Intramyocardial Injection of Hypoxia-Conditioned Extracellular Vesicles Increases Myocardial Perfusion in a Swine Model of Chronic Coronary Disease

Authors:
Dwight D. Harris, MD; Sharif A. Sabe, MD; Mark Broadwin, MD; Christopher Stone, MD; Cynthia Xu, MD; Meghamsh Kanuparthy, MD; Akshay Malhotra; M. Ruhul Abid, MD, PhD; Frank W. Sellke MD, FACS.

Running Title: Extracellular Vesicles Improve Perfusion

Affiliation:
1. Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University

Correspondence:
Frank W. Sellke, MD, Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI 02905.
Phone: (401)-444-2732. Fax: (401)-444-2380.
E-mail: fsellke@lifespan.org.

Disclosures: None

IRB approval: All experiments were approved by the Institutional Animal Care and Use Committee of Rhode Island Hospital (Approval number: 1791190-26, 10/12/2021).
Abstract:

Introduction:

Coronary artery disease (CAD) remains a leading cause of morbidity and mortality worldwide. Patients with advanced CAD who are not eligible for endovascular or surgical revascularization have limited options. Extracellular vesicles (EVs) have shown potential to improve myocardial function in preclinical models. EVs can be conditioned to modify their components. Hypoxia-conditioned EVs (HEVs) have demonstrated the ability to reduce infarct size and apoptosis in small animals. Our objective is to assess the potential benefits of HEVs in a large animal model of CAD.

Methods:

CAD was induced in fourteen Yorkshire swine by ameroid constriction of the left circumflex coronary artery. Two weeks post-surgery, swine underwent a repeat left thoracotomy for injections of either HEVs (n=7) or saline (CON, n=7). Five weeks later, all animals underwent terminal harvest for perfusion measurements and myocardial sectioning.

Results:

Myocardial perfusion analysis demonstrated a trend towards increase at rest and a significant increase during rapid pacing (p = 0.09, p < 0.001). There were significant increases in activated p-eNOS, eNOS, PI3K, p-AKT, and the p-AKT/AKT ratio in the HEV group compared to CON (all p < 0.05). Additionally, there was a significant decrease in the antiangiogenic proteins collagen 18 and angiostatin (p = 0.01, p = 0.01) in the HEV group.

Conclusion:

Intramyocardial injection of HEVs results in increased myocardial perfusion without a corresponding change in vessel density. This improvement in perfusion is therefore possibly attributable to changes in
nitric oxide signaling. HEVs represent a potential therapeutic strategy to increase myocardial perfusion in patients with advanced CAD.

Abbreviations:

- Control (CON)
- Coronary artery disease (CAD)
- Endothelial nitric oxide synthase (eNOS)
- Extracellular vesicles (EV)
- Human bone marrow-derived stem cells (HBMSCs)
- Hypoxia extracellular vesicles (HEV)
- Left circumflex coronary artery (LCx)
- Phosphorylated endothelial nitric oxide synthase (p-eNOS)
- Phosphorylated protein kinase B (p-AKT)
- Phosphatidylinositol 3-kinases (PI3K)
- Protein kinase B (AKT)
- Tissue inhibitor of metalloproteinases 2 (TIMP-2)

Keywords: Extracellular Vesicles; Myocardial Perfusion; Chronic Myocardial Ischemia; Swine; Hypoxia Conditioned; Intramyocardial Injection

Central Message: Intramyocardial injection of hypoxia-conditioned extracellular vesicles results in increased myocardial perfusion in a swine model of chronic myocardial ischemia.
Perspective Statement: Although there have been many advances in standard CAD therapeutics, patients with advanced CAD who are not eligible for endovascular stenting or surgical bypass have limited options. Hypoxia-conditioned extracellular vesicle treatment results in increased myocardial perfusion in our swine model, representing a potential therapeutic strategy in patients with advanced CAD.

Central Picture Legend: Ameroid Constrictor Placement.
Coronary artery disease (CAD) is the leading cause of morbidity and mortality worldwide and a major contributor to hospital cost and total health system burden. Patients with advanced CAD who are not eligible for endovascular stenting or surgical bypass have limited options. This results in a significant subset of the population with end-stage, no-option disease. This group of patients often gets placed on maximal medical therapy to prevent further ischemic injury. There is growing interest, however, in technology that not only prevents further injury, but also restores myocardial function.

Extracellular vesicles (EVs) have emerged as a promising therapeutic modality to not only prevent further injury, but also to potentially restore myocardial function. EVs, which carry multiple types of cargo including lipids, proteins, and nucleic acids, are released into the extracellular environment and play a crucial role in cell-to-cell communication. EVs have shown potential in the treatment of multiple disease processes, including trauma, limb ischemia, and ischemic cardiovascular disease. Our group has studied EVs derived from human bone marrow-derived mesenchymal stem cells (HBMSCs) extensively in our swine model of chronic myocardial ischemia. Using our model incorporating intramyocardial injection, we demonstrated several significant and clinically relevant improvements, including improved cardiac performance; augmented angiogenesis; and decreased inflammation.

While this work was conducted through use of traditionally prepared EVs, it is possible to enhance the characteristics and therapeutic capabilities of EVs through additional environmental preconditioning. EVs are conventionally developed using serum deprivation and in normal atmospheric oxygen levels; however, both oxygenation and growth media can be altered to influence ultimate EV phenotype. Hypoxia conditioning is especially noteworthy, as this modification may optimize EVs to function in the ischemic myocardium found in CAD. Additionally, our laboratory has shown using proteomic analysis that non-starved hypoxia-conditioned extracellular vesicles (HEVs) express the largest and most diverse quantity of sub-proteins when compared with serum-starved HEVs, normoxic serum-starved EVs, and normoxic non-starved EVs. We have previously published electron microscopy-generated morphologic data, immunoblotting, and proteomic data profiling of our HEVs.
Given our prior success with standard EVs in conjunction with the benefits of hypoxia preconditioning, our lab has begun studying HEVs in a validated swine model of CAD. We have previously demonstrated that myocardial injection of HEVs results in reduced total apoptosis and that this change in apoptosis is likely related to increases in pro-survival pathways. We have further shown that HEVs resulted in alterations in inflammatory signaling and the myocardial response to oxidative stress. There was no change, however, in studied functional parameters, including in cardiac output, ejection fraction, or systolic/diastolic ventricular function. With non-conditioned EVs, however, we observed a significant increase in myocardial perfusion, and that this was linked to increased myocardial angiogenesis. The goal of this study is to build on this body of work to enrich our understanding of the effects of HEVs on myocardial perfusion, angiogenesis, and nitric oxide signaling.

2. Methods:

2.1 Animal Model:

This study uses our previously published cohort of fourteen Yorkshire swine (Cummings School of Veterinary Medicine of Tufts University Farm, Grafton, MA, USA). All swine underwent left thoracotomy for placement of an ameroid constrictor (Research Instruments SW, Lebanon, OR, USA) on the left circumflex coronary artery (LCx). After the two weeks allotted for ameroid closure, swine underwent a redo left thoracotomy for intramyocardial injection of normal saline (CON, n = 7, male = 3, female = 4) or HEVs (n = 7, male = 3, female = 4). Five weeks after injection, swine underwent a terminal harvest procedure for perfusion measurement and tissue sectioning (Figure 1).

2.2 Animal Care:

This protocol was approved by the Institutional Animal Care and Use Committee of Rhode Island Hospital (approval number: 1791190-26, 10/12/2021). All animals received humane care as previously reported and in compliance with the Principles of Laboratory Animal Care and the Guide for the Care and Use of Laboratory Animals.
2.3 Ameroid Placement:
Swine received preoperative cephalaxin (30 mg/kg) for antimicrobial prophylaxis and aspirin (10 mg/kg) orally 1-day preoperatively and 5-days postoperatively for thrombosis prophylaxis. Anesthesia was induced as previously reported with intramuscularly injected telazol (4.4 mg/kg) and xylazine (2.2 mg/kg)22,23. Swine were intubated, and general anesthesia was maintained using inhaled isoflurane. Swine were placed in a modified right lateral decubitus position with a slight tilt toward table left. Animals were prepped with betadine, and a left thoracotomy was performed through the second intercostal space. The pericardium was opened to expose the heart, whereupon the left atrial appendage was retracted to expose the LCx. Dissection of the LCx was carried back to its origin from the left main coronary artery. Swine were heparinized (80 IU/kg), and the LCx was encircled with a vessel loop. Using the vessel loop, the LCx was occluded for a duration of two minutes while simultaneously injecting 5 mL of gold microsphere solution (BioPal, Worcester, MA, USA) into the right atrium to map the area at risk for ischemia. An ameroid constrictor was then placed at the base of the LCx as close to the left main coronary artery as possible to ensure creation of a uniform ischemic region across animals. The pericardium was then irrigated with saline to ensure hemostasis and subsequently closed with absorbable sutures. The chest was closed in layers using absorbable suture (Video 1). Postoperative pain control was the same as previously reported23.

2.4 Extracellular Vesicle Culture:
EV culture was conducted identically to our previously reported procedure18. HBMSCs (Lonza, Cambridge, MA, USA) were cultivated in accordance with manufacturer’s recommendations in growth medium (MSCGM Bulletkit PT-3001; Lonza, Cambridge, MA, USA) as previously described18. Cells were cultured to passage seven and 80% confluence. At this point, the culture medium was exchanged with fresh MSCGM media18. Hypoxia was then induced in the cells through incubation in a humidified hypoxia chamber for 24 h at 37 °C with an atmosphere comprised of 5% carbon dioxide and 95%
nitrogen18. After 24 h, media were collected, centrifuged, and extracted as previously described18. HEVs were suspended in phosphate-buffered saline with 1\% dimethyl sulfoxide and stored at -80 Celsius18. Protein quantification was performed with a PierceTM BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) to ensure a standardized quantity for injection18.

\textbf{2.5 Extracellular Vesicle Proteomics:}

Proteomics was conducted on aliquots of HEVs in triplicate (n = 3)18. The samples were prepared and then run on liquid chromatography with tandem mass spectrometry as previously described18. Peptide spectrum matching was searched against the UniProt protein database using the Sequest algorithm with Proteome Discoverer v. 2.3 software (Thermo Fisher Scientific, Waltham, MA, USA)18. Relative label-free quantitative analysis was then performed using the Minora algorithm. ShinyGO 0.76 (South Dakota State University, Brookings, SD, USA) was used for pathway analysis18.

\textbf{2.6 Extracellular Vesicle Injection:}

On the day of injection, HEVs (50 µg) were thawed and suspended in 2 mL of 0.9\% sterile saline22. According to our prior analysis, this 50 µg sample is comprised of 2×10^9 HBMSC-EV particles18,25. Anesthesia, preoperative antimicrobial prophylaxis, and preoperative thromboprophylaxis were the same as described in Section 2.3. The swine were again placed in a modified right lateral decubitus position with a slight tilt toward table left, prepped with betadine, and underwent left thoracotomy one intercostal space below the prior incision. Pulmonary adhesions were taken down as necessary with a combination of sharp and blunt dissection. The pericardium was reopened, and HEVs were injected into the myocardium in ten locations adjacent to the LCx22. The pericardium was irrigated with saline to ensure hemostasis and then closed with absorbable sutures, after which the chest was closed in layers using absorbable suture. Postoperative pain management was the same as described above in Section 2.3.

\textbf{2.7 Harvest and Perfusion:}
Anesthesia and preoperative care were the same as described in Section 2.3. Swine were positioned supine and prepped with betadine. The chest was opened through a median sternotomy and the pericardium was opened to expose the left atrium, right atrium, and apex. A right groin cutdown was performed to access the right femoral artery. Seldinger technique was used to place a 7 French vascular sheath in the femoral artery, which was attached to a withdrawal pump (Harvard Apparatus, Holliston, MA, USA). Labeled microspheres (BioPAL, Worcester, MA, USA) were injected at rest and during rapid pacing at 150 beats per minute, while simultaneously withdrawing 10 mL of blood from the femoral artery to measure myocardial perfusion. A pressure-volume catheter (Transonic, Ithica, NY, USA) was advanced into the proximal aorta from the right femoral artery; a second pressure-volume catheter (Transonic, Ithica, NY, USA) was then placed directly into the left ventricle using Seldinger technique. After the completion of physiologic measurements, the animal was euthanized. The heart was removed and sectioned after removal based on the proximity of the tissue to the left anterior descending and LCx arteries. Segments were individually snap frozen in liquid nitrogen. Gold microsphere concentrations were used to identify the most and least ischemic areas, with the former most commonly originating from the free wall adjacent to the LCx.

2.8 Lysate Production:

Lysates used in immunoblotting were produced from the ischemic and non-ischemic myocardial tissue of seven experimental and seven control animals. Myocardial tissue was lysed using the Halt Protease Inhibitor Cocktail (Thermo Fisher Scientific, Waltham, MA, USA), RIPA Lysis and Extraction Buffer (Boston Bioproducts Milford, MA, USA), and an ultrasonic homogenizer. Protein concentration was measured with the Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA).

2.9 Immunoblotting:

40 μg of protein lysate was run on a 4%-12% Bis-Tris gel (Thermo Fisher Scientific, Waltham, MA, USA) and then transferred onto a nitrocellulose membrane (Bio-Rad, Hercules, CA, USA). Membranes
were blocked in a 5% non-fat dry milk solution in tris-buffered saline (TBST, Boston BioProducts, Milford, MA, USA). Membranes were incubated with primary antibody dilutions in 5% bovine serum albumin in TBST for 24 hours (supplemental Table 1); washed with TBST and then incubated in horseradish-peroxidase-linked secondary antibody dilutions in 5% bovine serum albumin in TBST for 1 hour (supplemental Table 1); washed again with TBST and incubated with the Enhanced Chemiluminescence Western Blotting Substrate (Thermo Fisher Scientific, Waltham, MA, USA) developing agent; and finally imaged on a ChemiDoc Imaging System (Bio-Rad, Hercules, CA, USA). Repeat probing was conducted following use of Restore PLUS Western Blot Stripping Buffer (Thermo Fisher Scientific, Waltham, MA, USA) as needed. Image J software version 1.54 (National Institutes of Health, Bethesda, Maryland, USA) was used to measure immunoblot band intensity.

2.10 Immunofluorescence:

Arteriolar and capillary density was determined by immunofluorescent staining of frozen sections from ischemic myocardial tissue as previously described. Frozen sections were thawed and fixed with 10% paraformaldehyde. The slides were blocked in 3% bovine serum albumin in phosphate-buffered saline and incubated overnight in primary antibody to α-smooth muscle actin or isolectin B4 (supplemental Table 1). Slides were then rinsed with phosphate-buffered saline and incubated with secondary antibody for one hour. Slides were rinsed again and incubated in DAPI for five minutes, and then mounted for imaging using an Olympus VS200 Slide Scanner (Olympus Corporation, Tokyo, Japan). QuPath software 5.0 (Belfast, Northern Ireland, UK) was used for image analysis, with capillary density determined by percent of tissue area stained with isolectin B4, and arteriolar count determined by counting the number of SMA-staining objects with a minimum size of 100 µm² per area of tissue sections.

2.11 Statistics:

Prism 10 (GraphPad Software, San Diego, CA, USA) was used for data analysis. The Shapiro–Wilk test was used to determine normality, and data that followed a normal distribution was analyzed with
Student’s t-test, while non-parametric data was analyzed with the Mann–Whitney U test. Immunoblot data are represented as mean fold change normalized to the control group average as previously described. Protein expression was correlated to myocardial perfusion using the Spearman rank correlation. Outliers greater than 2 standard deviations from the mean were excluded from analysis. p-values less than or equal to 0.05 were considered significant.

3. Results:

3.1 Hypoxia-Conditioned Extracellular Vesicle Proteomics:

We have previously demonstrated the absence of albumin and the presence of the transmembrane proteins CD81 and CD91 in HEVs using immunoblotting\(^\text{18}\). HEVs were previously evaluated with electron microscopy and found to have a mean particle size of 179.2 ± 7.3 nm\(^\text{18}\). Proteomic analysis of HEVs identified 395 unique proteins, as previously reported by our group. This included 15 proteins involved in angiogenesis and AKT signaling (Table 1).

3.2 Hypoxia-Conditioned Extracellular Vesicles Improve Myocardial Perfusion:

Myocardial perfusion analysis showed a trend towards increased myocardial perfusion at rest and a significant increase in ischemic myocardial perfusion while pacing the heart at 150 bpm in the HEV group when compared to the CON group (p = 0.09, p < 0.001, Figure 2A, Supplemental Table 2).

3.3 Hypoxia-Conditioned Extracellular Vesicles Do Not Change Myocardial Vascular Density:

No changes were observed in arteriolar density by α-smooth muscle actin or capillary density by isolectin B4 in the ischemic myocardium between the HEV and CON groups (p=0.56 and p=0.14, respectively, Figure 2B, Supplemental Table 2).

3.4 Hypoxia-Conditioned Extracellular Vesicles Modulate Angiogenic Signaling:
There was a significant decrease in antiangiogenic proteins collagen 18 and angiostatin in ischemic myocardial lysates from the HEV group (p = 0.01 and p = 0.01, respectively, Figure 2). This tissue also exhibited a significant increase in the antiangiogenic mediators tissue inhibitor of metalloproteinases 2 (TIMP-2), plasminogen, and cathepsin B compared to the CON group (all p < 0.05, Figure 2). There was no significant change in cathepsin D, cathepsin L, and endostatin (all p > 0.05, Figure 3, Supplemental Table 2).

3.5 Hypoxia-Conditioned Extracellular Vesicles Augment Nitric Oxide Signaling:

There were significant increases in phosphorylated-endothelial nitric oxide synthase (p-eNOS), endothelial nitric oxide synthase (eNOS), phosphatidylinositol 3-kinase (PI3K), phosphorylated-protein kinase B (p-AKT), protein kinase B (AKT), and the ratio of p-AKT to AKT in the ischemic myocardium of the HEV group when compared to CON (all p < 0.05, Figure 4, Supplemental Table 2).

3.6 Myocardial Perfusion is Correlated with Protein Expression:

There was a significant positive correlation with ischemic myocardial perfusion during pacing and protein expression of p-eNOS, eNOS, TIMP-2, and PI3K (all p < 0.05, Table 2); and there was a significant negative correlation with ischemic myocardial perfusion during pacing and protein expression of collagen 18 and angiostatin (p = 0.02, p = 0.008, Table 3). There was no significant correlation with perfusion at rest and any of the tested proteins (all p > 0.05, Table 2). There was no significant correlation with ischemic myocardial perfusion while pacing with AKT, p-AKT, and cathepsin B (all p > 0.05, Table 2, Supplemental Table 2).

3.7 Hypoxia-Conditioned Extracellular Vesicles Produce Minimal Changes in the Non-Ischemic Myocardium:

There was no difference in non-ischemic myocardial perfusion at rest or while pacing the heart at 150 bpm in between the HEV and CON groups (p = 0.66, p = 0.66, Supplemental Figure 1A). There was
no difference in expression of collagen 18, angiostatin, plasminogen, TIMP-2, cathepsin B, p-eNOS, eNOS, AKT, or p-AKT in non-ischemic HEV myocardium compared to CON (all p>0.05, Supplemental Figure 1B, Supplemental Figure 2). There was a significant increase in PI3K in the non-ischemic HEV myocardium compared to CON (p < 0.001, Supplemental Figure 2, Supplemental Table 2).

4. Discussion:

Despite the multitude of therapeutic advances for patients with CAD, patients with advanced disease who are not eligible for revascularization have very limited options\(^3\). There is growing interest in EVs as novel modality capable not only of preventing further injury, but also of restoring previously lost myocardial function. Given this growing interest and the corresponding need to cultivate a product with maximal translational potential, we have developed HEVs with the hope that they will be optimized to function within the hypoxic context of ischemic myocardial disease. We have previously shown that HEVs express the greatest diversity of sub-proteins when compared with alternative methods of EV conditioning\(^18\). In this analysis, we expanded our characterization of HEV-associated protein content through identification of 15 markers that are involved in AKT signaling and angiogenesis.

In addition to marker analysis, our blood flow assays showed that the ischemic myocardium of the HEV group exhibited a significant increase in myocardial perfusion during rapid ventricular pacing, as well as a strong trend towards increased myocardial perfusion at rest. This increase in perfusion was not related to an increase capillary or arteriolar density, but was accompanied by multiple notable protein expression changes elicited by immunoblotting of ischemic myocardium. First, there was a combination of both decreased expression of the anti-angiogenic proteins collagen 18 and angiostatin, and increased expression of anti-angiogenic TIMP-2 and cathepsin B\(^{28-31}\). The increase in plasminogen we also observed may reflect decreased breakdown of plasminogen into angiostatin\(^32\). These findings are noteworthy not only for the account of molecular correlates of increased perfusion that they provide, but also given the lack of correlation they exhibit between myocardial angiogenesis. The lack of
microvascular changes we observed suggests that the changes in perfusion are related to changes in ischemic myocardium microvascular reactivity, rather than to total vascular count.

This contention is supported by the modulation we also showed of several proteins involved vascular reactivity in the ischemic myocardium. Specifically, the HEV group exhibited a significant increase in vasodilatory p-eNOS, as well as total eNOS. This may be related to an increase in the upstream signaling mediators p-AKT and PI3K; this interaction is further validated by a significant positive trend between p-eNOS, eNOS and PI3K expression and perfusion of the ischemic myocardium, as well as by the multiple upregulated proteins related to PI3K/AKT signaling found previously through proteomic profiling of HEVs. Conversely, we observed decreases in the vasoconstrictive proteins collagen 18 and angiostatin, along with a significant negative trend between expression of these proteins and myocardial perfusion. Taken together, these findings suggest changes in vascular reactivity related to both increases in vasodilatory proteins and decreases in vasoconstrictive counterparts as an account of the augmented perfusion observed in our study. This change in perfusion is most notable with pacing, implying that the increase in perfusion and release of nitric oxide are potentially related to a myocardial stress response. The tissue collected in the study was only collected after pacing the heart, however, precluding comparison between stressed and unstressed tissue in this study. Patients with refractory angina often experience symptoms with mild to moderate stress, positioning this increase in perfusion with myocardial stress as a clinically relevant consequence of HEV administration in patients with refractory angina.

The results of this study differ from our previous results using traditional, non-hypoxia-conditioned EVs. In this previous work, EV treatment resulted in increased myocardial perfusion; however, the increase in perfusion was correlated with increases in arteriolar and capillary density. The results of our previous study also showed increased nitric oxide and AKT signaling similar to the current study. These differences suggest that HEVs result in changes in vascular reactivity, as opposed to the increased angiogenesis seen with traditional EVs. A study comparing HEVs to traditional EVs is necessary to further understand this difference, and any functional implications it may confer.
Finally, EV-injected tissue in the non-ischemic area did not produce a significant change in myocardial perfusion or protein expression, apart from in PI3K. This suggests that HEVs have minimal impact on the surrounding healthy tissue.

In summary, our results demonstrate that HEVs produce a significant increase in myocardial perfusion independent of myocardial neovascularization and likely related to favorable alterations in microvascular reactivity. Taken together with our previously described decreases in myocardial apoptosis, modulation of oxidative stress, and decreased cardiac inflammation, this study indicates that HEVs may induce pleiotropic tissue-level benefits for patients with advanced ischemic myocardial disease (Figure 5). Further studies are needed to delineate the optimal type of EVs for use in human studies; the results of our study suggest that follow-up experiments designed to evaluate the effects of HEVs in conjunction with revascularization in anticipation of future human studies are warranted.

While these results substantially expand our mechanistic understanding of the potential held by HEV therapy to augment perfusion to the ischemic myocardium in CAD, their accurate interpretation requires consideration of several limitations. First, the sample size of 7 animals per group could result in inadequate power to identify small changes in myocardial function or protein signaling. We have previously found changes in perfusion and angiogenesis with EVs using sample sizes of 8-10, but the slightly lower size of the current cohort likely limits the power of this study. Similarly, our study used a mixed cohort with respect to sex, but is underpowered to conduct sex-specific analysis given its small sample size. Additionally, our methodology permits evaluation of only one dose of injection and one time point, while findings could be impacted by different doses, additional time points, or different analytic durations. The lack of the ability to perform microvascular studies at the time of this experiment prevented inclusion in our dataset of additional corroborating evidence of the dependence of perfusion changes on vascular reactivity. Finally, EV studies in general are limited by the reproducibility of EVs between labs. It has been shown that different labs can use the same cell lines and similar culture methods and nevertheless produce different EVs. This is a well-recognized issue among EV researchers that requires further standardization in anticipation of large-scale production. This, in turn, requires
specification of the optimal conditioning protocol, and we hope that our results will contribute to this effort.

5. Conclusions:
Intramyocardial injection of HEVs results in increased myocardial perfusion, particularly in the setting of myocardial stress, and without a corresponding change in myocardial vascular density. This suggests that modulation of the vasodilatory protein p-eNOS, as well as of the vasoconstrictive mediators collagen 18 and angiostatin, may account for the observed change in perfusion through corresponding modulation of microvascular reactivity. These results position HEV treatment as a potential therapeutic strategy to increase myocardial perfusion in patients with advanced coronary artery disease.

6. Funding:
This research was funded by NIH T32HL160517 (M.B., D.D.H., C.S); T32 GM065085 (C.X); the National Heart, Lung, and Blood Institute (NHLBI) 1F32HL160063-01 (S.A.S.); R01HL133624 (M.R.A.); R56HL133624-05 (M.R.A.); a Rhode Island Foundation grant 1472420231 (M.R.A.); R01HL46716 (F.W.S.), and R01HL128831 (F.W.S.).

7. Acknowledgements:
The authors would like to thank the veterinary and animal care staff at Rhode Island Hospital.

8. Disclosures:
The authors have no conflicts of interest to report.

9. Data Availability Statement:
Data are available upon request to the corresponding author.

11. Figures:
Fourteen Yorkshire swine underwent left thoracotomy for placement of an ameroid constrictor around the left circumflex coronary artery. After two weeks of ischemic induction, swine underwent redo left thoracotomy with intramyocardial injection of normal saline (n = 7) or hypoxia-conditioned extracellular vesicles (EV, n = 7). Five weeks after injection, all swine underwent a terminal harvest procedure with perfusion measurement and tissue sectioning.

Figure 2. Myocardial Perfusion and Vascular Density. Figure 2A: Myocardial perfusion analysis showed a trend towards increased myocardial perfusion at rest and a significant increase in myocardial perfusion while pacing the heart at 150 bpm in the hypoxia-conditioned extracellular vesicle (HEV) group compared to the control (CON) group. Figure 2B: No changes were observed in arteriolar density by α-smooth muscle actin (yellow) or capillary density by isolectin B4 (magenta) between the HEV and CON groups. The DAPI nuclear stain appears here in blue.

Figure 3: Angiogenic Signaling. There was a significant decrease in antiangiogenic collagen 18 and angiostatin in the hypoxia-conditioned extracellular vesicle (HEV) group compared to the control (CON) group. The HEV group also exhibited a significant increase in the antiangiogenic tissue inhibitor of metalloproteinases 2 (TIMP-2), plasminogen, and cathepsin B compared to CON. There was no significant change in cathepsin D, cathepsin L, endostatin, and Tie 2. Immunoblot data are represented as mean fold change normalized to the CON mean as previously described. All data are represented as mean plus or minus standard deviation.

Figure 4: Nitric Oxide Signaling. There were significant increases in phosphorylated-endothelial nitric oxide synthase (p-eNOS), the p-eNOS to endothelial nitric oxide synthase (eNOS) ratio, phosphatidylinositol 3-kinases (PI3K), phosphorylated-protein kinase B (p-AKT), protein kinase B (AKT), and the ratio of p-AKT to AKT in the hypoxia extracellular vesicle (HEV) group compared to control (CON). There was a trend towards decreased eNOS in the HEV group compared to CON.
Immunoblot data are represented as mean fold change normalized to the CON mean as previously described. All data are represented as mean plus or minus standard deviation.

Figure 5: Visual Abstract. Intramyocardial injection of HEVs results in increased myocardial perfusion without a corresponding change in myocardial vascular density. This suggests modulation of vasodilatory nitric oxide signaling, as well as of vasoconstrictive mediators, may be responsible for the observed change in perfusion.

Supplemental figure 1: Non-ischemic Perfusion and Angiogenic Signaling. Figure 1A: There was no difference in non-ischemic myocardial perfusion at rest or while pacing the heart at 150 bpm between the hypoxia-conditioned extracellular vesicle (HEV) group compared to the control (CON) group. Figure 1B: There was no difference in expression of collagen 18, angiostatin, plasminogen, tissue inhibitor of metalloproteinases (TIMP-2), or cathepsin B. Immunoblot data are represented as mean fold change normalized to the average control. All data are represented as mean plus or minus standard deviation.

Supplemental figure 2: Non-ischemic Nitric Oxide Signaling. There was no difference in non-ischemic myocardial expression of phosphorylated-endothelial nitric oxide synthase (p-eNOS), endothelial nitric oxide synthase (eNOS), phosphorylated-protein kinase B (p-AKT), protein kinase B (AKT), or the ratio of p-AKT to AKT in the hypoxia extracellular vesicle (HEV) group compared to control (CON). There was a significant increase in phosphatidylinositol 3-kinases (PI3K) in the HEV group compared to CON. Immunoblot data are represented as mean fold change normalized to the CON mean. All data are represented as mean plus or minus standard deviation.

12. Tables:

Table 1.
<table>
<thead>
<tr>
<th>Protein Name</th>
<th>Log10 (Abundance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-3-3 Protein</td>
<td>7.2 (7.1 - 7.2)</td>
</tr>
<tr>
<td>Alpha-actinin-4</td>
<td>6.5 (6.5 - 6.6)</td>
</tr>
<tr>
<td>Cadherin-13</td>
<td>6.1 (6.0 - 6.1)</td>
</tr>
<tr>
<td>Fibronectin</td>
<td>7.7 (7.7 - 7.8)</td>
</tr>
<tr>
<td>GTPase KRAS</td>
<td>5.9 (5.9 - 5.9)</td>
</tr>
<tr>
<td>GTP binding protein</td>
<td>6.0 (6.0 - 6.0)</td>
</tr>
<tr>
<td>Guanine nucleotide-binding protein</td>
<td>7.1 (7.0 - 7.1)</td>
</tr>
<tr>
<td>Heat shock protein 90</td>
<td>6.6 (6.6 - 6.7)</td>
</tr>
<tr>
<td>Integrin-alpha</td>
<td>5.8 (5.8 - 5.8)</td>
</tr>
<tr>
<td>Integrin-beta</td>
<td>7.8 (7.7 - 7.8)</td>
</tr>
<tr>
<td>Junction plakoglobin</td>
<td>5.0 (4.9 - 5.1)</td>
</tr>
<tr>
<td>Myosin heavy polypeptide 9</td>
<td>5.9 (5.8 - 5.9)</td>
</tr>
<tr>
<td>Ras homolog</td>
<td>6.3 (6.3 - 6.3)</td>
</tr>
<tr>
<td>Thrombospondin-1</td>
<td>6.5 (6.5 - 6.5)</td>
</tr>
<tr>
<td>Tyrosine 3-monooxygenase</td>
<td>5.5 (5.4 - 5.5)</td>
</tr>
</tbody>
</table>

Table 1. AKT Signaling and Angiogenesis Proteomics. Table 1 shows the proteins identified in the hypoxia-conditioned extracellular vesicle proteomics that contribute to angiogenesis and AKT signaling.

The data is displayed as the Log10 of the average protein abundance from the 3 samples utilized in this experiment along with the min and max Log10 of protein abundance in parentheses.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Rest</th>
<th>Paced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>p</td>
</tr>
</tbody>
</table>

Table 2.
Table 2. Perfusion Correlation. Table 3 shows the correlation (r) between myocardial perfusion and protein expression. Significant probability values are in bold.

Supplemental Table 1.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Company</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha-smooth muscle actin</td>
<td>Abcam</td>
<td>7817</td>
</tr>
<tr>
<td>Angiostatin/plasminogen</td>
<td>Abcam</td>
<td>2904</td>
</tr>
<tr>
<td>Cathepsin B</td>
<td>Cell Signaling</td>
<td>3178</td>
</tr>
<tr>
<td>Cathepsin D</td>
<td>Cell Signaling</td>
<td>69854</td>
</tr>
<tr>
<td>Cathepsin L</td>
<td>Cell Signaling</td>
<td>71298</td>
</tr>
<tr>
<td>Collagen 18/endostatin</td>
<td>Abcam</td>
<td>275390</td>
</tr>
<tr>
<td>Phosphorylated-endothelial nitric oxide synthase</td>
<td>Cell Signaling</td>
<td>9571</td>
</tr>
<tr>
<td>Endothelial nitric oxide synthase</td>
<td>Cell Signaling</td>
<td>32027</td>
</tr>
<tr>
<td>Isolectin B4</td>
<td>Thermo Fisher Scientific</td>
<td>132450</td>
</tr>
<tr>
<td>Phosphatidylinositol 3-kinases</td>
<td>Cell Signaling</td>
<td>4249</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>Phosphorylated-protein kinase B</td>
<td>Cell Signaling</td>
<td>4060</td>
</tr>
<tr>
<td>Protein kinase B</td>
<td>Cell Signaling</td>
<td>9272</td>
</tr>
<tr>
<td>Tissue inhibitor of metalloproteinases 2</td>
<td>Cell Signaling</td>
<td>5738</td>
</tr>
</tbody>
</table>

Secondary Antibodies

<table>
<thead>
<tr>
<th>Anti-mouse HRP-linked Antibody</th>
<th>Cell Signaling</th>
<th>7076S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-rabbit HRP-linked Antibody</td>
<td>Cell Signaling</td>
<td>7074S</td>
</tr>
<tr>
<td>Anti-mouse Alexa Fluor 594</td>
<td>Cell Signaling</td>
<td>8890</td>
</tr>
</tbody>
</table>

Supplemental Table 1. Antibodies. Supplemental Table 1 lists the antibodies used in the experiment, along with manufacturers and catalog numbers.

<table>
<thead>
<tr>
<th>Control</th>
<th>Hypoxia Extracellular Vesicles</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfusion Data Ischemic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood Flow Rest, mL/min/g</td>
<td>0.59 ± 0.21</td>
<td>0.84 ± 0.24</td>
</tr>
<tr>
<td>Blood Flow Paced, mL/min/g</td>
<td>0.63 ± 0.11</td>
<td>1.00 ± 0.15</td>
</tr>
<tr>
<td>Perfusion Data Non-Ischemic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood Flow Rest, mL/min/g</td>
<td>0.86 ± 0.32</td>
<td>0.94 ± 0.22</td>
</tr>
<tr>
<td>Blood Flow Paced, mL/min/g</td>
<td>1.19 ± 0.45</td>
<td>1.33 ± 0.27</td>
</tr>
<tr>
<td>Immunohistochemistry Ischemic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolectin B4 Staining, % positive</td>
<td>21.1 ± 2.2</td>
<td>19.2 ± 1.9</td>
</tr>
<tr>
<td>Protein</td>
<td>Immunoblotting Ischemic</td>
<td>Immunoblotting Non-Ischemic</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>α-Smooth Muscle Actin, vessel count</td>
<td>11.7 ± 2.3</td>
<td>10.6 ± 3.5</td>
</tr>
<tr>
<td>AKT</td>
<td>1.00 ± 0.19</td>
<td>1.34 ± 0.21</td>
</tr>
<tr>
<td>pAKT</td>
<td>1.00 ± 0.16</td>
<td>1.14 ± 0.13</td>
</tr>
<tr>
<td>AKT Ratio</td>
<td>1.00 ± 0.16</td>
<td>1.18 ± 0.11</td>
</tr>
<tr>
<td>Angiostatin</td>
<td>1.03 [0.99 - 01.11]</td>
<td>0.94 [0.71 - 0.96]</td>
</tr>
<tr>
<td>Cathepsin B</td>
<td>0.65 ± 0.21</td>
<td>1.76 ± 1.02</td>
</tr>
<tr>
<td>Cathepsin D</td>
<td>1.00 ± 0.32</td>
<td>0.76 ± 0.13</td>
</tr>
<tr>
<td>Cathepsin L</td>
<td>1.00 ± 0.31</td>
<td>0.86 ± 0.18</td>
</tr>
<tr>
<td>Collagen 18</td>
<td>1.00 ± 0.27</td>
<td>0.60 ± 0.11</td>
</tr>
<tr>
<td>Endostatin</td>
<td>1.00 ± 0.25</td>
<td>0.89 ± 0.34</td>
</tr>
<tr>
<td>eNOS</td>
<td>1.00 ± 0.20</td>
<td>0.78 ± 0.15</td>
</tr>
<tr>
<td>p-eNOS</td>
<td>0.86 ± 0.14</td>
<td>1.81 ± 0.32</td>
</tr>
<tr>
<td>eNOS Ratio</td>
<td>0.74 ± 0.20</td>
<td>1.98 ± 0.76</td>
</tr>
<tr>
<td>PI3K</td>
<td>1.00 ± 0.18</td>
<td>1.35 ± 0.11</td>
</tr>
<tr>
<td>Plaminogen</td>
<td>1.00 ± 0.19</td>
<td>1.31 ± 0.31</td>
</tr>
<tr>
<td>TIMP-2</td>
<td>1.00 ± 0.47</td>
<td>1.86 ± 0.70</td>
</tr>
<tr>
<td>Angiostatin</td>
<td>1.00 ± 0.10</td>
<td>1.05 ± 0.12</td>
</tr>
<tr>
<td>Cathepsin B</td>
<td>1.00 ± 0.39</td>
<td>2.04 ± 1.35</td>
</tr>
</tbody>
</table>
Supplemental Table 2. Data

Supplemental Table 2 lists all of the data from the study. Data with a normal distribution are listed as mean ± standard deviation (SD). Non-parametric data are listed as median [Q1-Q3].

<table>
<thead>
<tr>
<th></th>
<th>Mean ± SD</th>
<th>Median [Q1-Q3]</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagen 18</td>
<td>1.00 ± 0.23</td>
<td>0.89 ± 0.25</td>
<td>0.43</td>
</tr>
<tr>
<td>eNOS</td>
<td>1.00 ± 0.61</td>
<td>0.67 ± 0.48</td>
<td>0.33</td>
</tr>
<tr>
<td>p-eNOS</td>
<td>1.00 ± 0.74</td>
<td>1.31 ± 0.58</td>
<td>0.44</td>
</tr>
<tr>
<td>eNOS Ratio</td>
<td>1.18 [0.04-1.93]</td>
<td>0.98 [0.93-]</td>
<td>0.32</td>
</tr>
<tr>
<td>PI3K</td>
<td>1.00 ± 0.23</td>
<td>1.60 ± 0.23</td>
<td><0.001</td>
</tr>
<tr>
<td>Plaminogen</td>
<td>1.00 ± 0.19</td>
<td>1.07 ± 0.10</td>
<td>0.44</td>
</tr>
<tr>
<td>TIMP-2</td>
<td>0.76 ± 0.18</td>
<td>0.92 ± 0.42</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Video 1: Ameroid Constrictor Placement

A left thoracotomy was performed through the second intercostal space. The pericardium was opened to expose the heart. The left atrial appendage was retracted to expose the left circumflex coronary artery (LCx). Dissection of the LCx was carried back to the origin from the left main coronary artery. The LCx was then encircled with a vessel loop. The LCx was occluded for a duration of two minutes while simultaneously injecting 5 mL solution of gold microspheres into the right atrium to map the area at risk for ischemia. An ameroid constrictor was then placed at the base of the LCx. The pericardium was irrigated with saline to ensure hemostasis and subsequently closed with absorbable sutures. The chest was closed in layers using absorbable sutures.
14 Yorkshire Swine
Age 11 Weeks

Ameroid

Thoracotomy + EV
Injection (n=7)

Thoracotomy + Saline
Injection (n=7)

2 Weeks

5 Weeks

2 Weeks

5 Weeks

Harvest
A

Blood Flow Rest

- Flow (mL/min/g)
- CON vs. HEV
- p = 0.09

Blood Flow Paced

- Flow (mL/min/g)
- CON vs. HEV
- p < 0.001

B

Saline Control

Hypoxia EVs

Arteriolar Density

- Arterioles/mm²
- p = 0.56

Capillary Density

- Isolectin B4 (% Area)
- p = 0.14
Intramyocardial Injection of Hypoxia Conditioned Extracellular Vesicles Increases Myocardial Perfusion in a Swine Model for Chronic Myocardial Ischemia
A

Blood Flow Rest

![Graph showing blood flow at rest with no significant difference between CON and HYP groups.](image)

Blood Flow Paced

![Graph showing blood flow during paced activity with no significant difference between CON and HYP groups.](image)

B

Angiostatin

![Graph showing fold change in angiostatin with no significant difference between CON and HYP groups.](image)

Cathepsin B

![Graph showing fold change in cathepsin B with a significant difference between CON and HYP groups.](image)

Collagen 18

![Graph showing fold change in collagen 18 with no significant difference between CON and HYP groups.](image)

Plasminogen

![Graph showing fold change in plasminogen with no significant difference between CON and HYP groups.](image)

TIMP-2

![Graph showing fold change in TIMP-2 with no significant difference between CON and HYP groups.](image)