Greater ipsilateral rectus muscle atrophy after robotic thoracic surgery compared to open and Video-assisted thoracoscopic surgery approaches

Yoyo Wang, BS, Ryan J. Randle, MD, Prasha Bhandari, MPH, Hao He, PhD, Winston L. Trope, BA, Brandon A. Guenthart, MD, Haiwei H. Guo, MD, Douglas Z. Liou, MD, Leah M. Backhus, MD, Mark F. Berry, MD, Joseph B. Shrager, MD, Natalie S. Lui, MD

PII: S2666-2736(24)00131-1
DOI: https://doi.org/10.1016/j.xjon.2024.05.011
Reference: XJON 1078

To appear in: JTCVS Open

Received Date: 14 January 2024
Revised Date: 31 March 2024
Accepted Date: 23 April 2024

Please cite this article as: Wang Y, Randle RJ, Bhandari P, He H, Trope WL, Guenthart BA, Guo HH, Liou DZ, Backhus LM, Berry MF, Shrager JB, Lui NS, Greater ipsilateral rectus muscle atrophy after robotic thoracic surgery compared to open and Video-assisted thoracoscopic surgery approaches, JTCVS Open (2024), doi: https://doi.org/10.1016/j.xjon.2024.05.011.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2024 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Greater ipsilateral rectus muscle atrophy after robotic thoracic surgery compared to open and VATS approaches

Methods

- Lobectomies in 2018
 - Open: n=25
 - VATS: n=56
 - Robotic: n=18

Results

- Significantly more atrophy at 6 months after robotic surgery when compared to open (31.4% vs 9.5%, p=0.049) and VATS (31.4% vs 14.1%, p=0.021).
- No significant differences in cross-sectional area between open and VATS approach.
- Mixed-effects model demonstrated significantly more atrophy after robotic surgery when compared to open (p=0.008) and VATS (p=0.021).

Implications

- Findings should be correlated to clinical symptoms and followed to assess for resolution.
- Surgeons can better counsel patients on minimally invasive operative approaches.

Cross sectional area and density was measured bilaterally using axial CT scans.

VATS = Video-assisted thoracoscopic surgery, CT = Computed tomography
Greater ipsilateral rectus muscle atrophy after robotic thoracic surgery compared to open and Video-assisted thoracoscopic surgery approaches

Yoyo Wang BS¹, Ryan J. Randle MD², Prasha Bhandari MPH², Hao He PhD², Winston L. Trope BA², Brandon A. Guenthart MD², Haiwei H. Guo MD³, Douglas Z. Liou MD², Leah M. Backhus MD², Mark F. Berry MD², Joseph B. Shrager MD², Natalie S. Lui MD²

Institutions and Affiliations:

1. University of Michigan Medical School, Ann Arbor, MI
2. Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University Medical Center, Stanford, CA
3. Department of Radiology, Stanford University Medical Center, Stanford, CA

Disclosures: None

Funding: None

Correspondence Address:
Natalie S. Lui
300 Pasteur Drive
Falk Building
Stanford, CA 94305
E-mail: natalielui@stanford.edu
Phone: 650-721-2086

Meeting Presentation: American College of Surgeons Clinical Congress 2020

Word count: 2,198

IRB Approval: The study was approved by the Stanford University Institutional Review Board (#53467).
Glossary of Abbreviations:

- VATS: Video-assisted thoracoscopic surgery
- CT: Computed tomography
- HU: Hounsfield Units
- IQR: Interquartile range
- SF-MPQ: Short-form McGill Pain Questionnaire
Central Message: Greater ipsilateral rectus muscle atrophy was associated with robotic thoracic surgery when compared to open or VATS approaches. Patients should be followed to assess for resolution of symptoms.

Perspective Statement: Robotic thoracic surgery was associated with greater ipsilateral rectus muscle atrophy when compared to open or VATS approaches. This finding could be due to the more inferior port placement affecting intercostal nerves that innervate the abdominal wall. Findings from this study will better allow surgeons to adequately counsel patients regarding minimally invasive operative approaches.

Central Picture: Measurement of rectus abdominis pre- and postoperatively using computed tomography scans
Abstract

Objective: Robotic thoracic surgery provides another minimally invasive approach in addition to video-assisted thoracoscopic surgery (VATS) that yields less pain and faster recovery compared to open surgery. However, robotic incisions are generally placed more inferiorly, which may increase the risk of intercostal nerve injury that affects the abdominal wall. We hypothesized that a robotic approach causes greater ipsilateral rectus muscle atrophy compared to open and VATS approaches.

Methods: The cross-sectional area and density of bilateral rectus abdominis muscles were measured on computed tomography (CT) scans in patients who underwent lobectomy in 2018. The differences between the contralateral and ipsilateral muscles were compared between preoperative and 6-month surveillance scans. Changes were compared among the open, VATS, and robotic approaches through a mixed effects model after adjustments of correlation and covariates.

Results: Of 99 lobectomies, 25 (25.3%) were open, 56 (56.6%) VATS, and 18 (18.1%) robotic. The difference between the contralateral and ipsilateral rectus muscle cross-sectional area was significantly larger at 6 months after robotic surgery compared to open (31.4% vs 9.5%, p=0.049) and VATS (31.4% vs 14.1%, p=0.021). There were no significant differences in the cross-sectional area between the open and VATS approach.

Conclusion: In this retrospective analysis, there was greater ipsilateral rectus muscle atrophy associated with robotic thoracic surgery compared to open or VATS approaches. These findings should be correlated with clinical symptoms and followed to assess for resolution or persistence.

Word count: 230

Keywords: muscle atrophy, intercostal nerve injury, lobectomy, robot assisted, rectus abdominis
Introduction:
The use of robotic surgery offers another minimally invasive approach, in addition to video assisted thoracoscopic surgery (VATS), that yields less pain and a faster recovery time compared to open surgery. When compared to traditional approaches, robotic incisions are generally placed more inferiorly, which may increase the risk of intercostal nerve injury that affects the abdominal wall. This may lead to symptoms such as tingling, numbness, muscle atrophy, and the development of pseudohernias.

The rectus abdominis muscle is innervated by the intercostal nerves T7 to T12 and damage to these nerves is less likely during a thoracotomy where the incisions are typically made between intercostal nerves T4 and T6. However, port placement during multiport VATS may damage the intercostal nerves that innervate the rectus abdominis. Previous studies have evaluated the effect of different surgical approaches on the development of this nerve damage by assessing nerve conductance and the development of pseudohernias in the rectus abdominis. One study found that among patients who underwent a thoracotomy, the greatest rate of total nerve conduction block at the intercostal nerve right above the incision site. This nerve damage was attributed to the use of a rib spreader during a thoracotomy and may help establish a cause of atrophy in the rectus abdominis. There have been other studies that have reported paralysis and atrophy of the rectus abdominis muscle during surgery.

However, to our knowledge, there are no studies that have evaluated the degree of muscular loss between different surgical approaches.

The objective of this study is to compare the degree of muscular atrophy among open, VATS, and robotic approaches. We hypothesize that robotic surgery causes greater ipsilateral rectus muscle atrophy compared to open and VATS approaches.

Methods:
Study Design:

Patients who underwent lobectomy at our institution in 2018 were identified and classified by initial operative approach. Patients underwent either a thoracotomy, VATS, or robotic-assisted approach. The approximate incision and port placement sites are depicted in Figure 1. In general, thoracotomies were performed in the 4th or 5th intercostal space; VATS access incisions were made in the 4th or 5th intercostal space anteriorly, while the camera and retraction incisions were made at about the 7th or 8th intercostal space; robotic incisions were made at about the 7th or 8th intercostal spaces, with the assistant port in the 9th intercostal space. For robotic cases, the specimens were usually extracted from the assistant port site. Those who underwent sternotomy, and those who did not have a 6 month follow up scan available, were excluded. The study was approved by the Stanford University Institutional Review Board (#53467, 12/2/2019).

Rectus abdominis muscle measurements:

Axial images from chest computed tomography (CT) scans were used to measure the rectus abdominis muscles. The upper bundle of the right and left rectus abdominis just inferior to the costal margin were manually traced using a “polygon region of interest tool,” and the cross-sectional area (mm²) and radio density (Hounsfield units [HU]) were recorded. Since CT scans of the chest include the upper abdomen, this upper bundle could be measured on our routine preoperative and surveillance scans. Matching locations were measured for comparisons between scans. The measurements were taken from scans at the following time points: 1) preoperative, 2) 6 months after surgery, and 3) 12 months after surgery. In the majority of cases, these scans were performed as part of routine surveillance after treatment of primary lung cancer. A 1-month margin was provided on either side of the 6 month and 12 month timepoints. Measurements were taken for both the ipsilateral and contralateral sides. The reviewers were blinded to the surgical approach while measuring the rectus abdominis muscles. All measurements were made using Sectra PACS viewer IDS7 Version 20.2.14 (Sectra Medical, Linköping, SWEDEN).
Statistical Analyses:

The difference between the ipsilateral and contralateral cross-sectional area and density for the rectus abdominis muscle were calculated for each patient. Patients with extreme differences (more than 1.5*interquartile range) between the preoperative ipsilateral and contralateral cross-sectional area and density were excluded from the study.

Patient baseline characteristics were reported using frequencies and proportions for categorical variables and were compared using Pearson’s chi-square or Fischer’s exact test while continuous variables were reported as median and interquartile range (IQR) and compared using Kruskal-Wallis Test.

The percent atrophy in the rectus abdominis muscle was calculated by using the difference between the preoperative and postoperative measurements, and then divided by the preoperative measurement. This was performed for both ipsilateral and contralateral sides, evaluating both cross-sectional area and density, at 6 months and 12 months after surgery. A positive value for percent atrophy indicates a decrease in the cross-sectional area or density of the muscle after surgery, while a negative value indicates an increase.

Descriptive analyses were first performed on the preoperative as well as 6- and 12-month postoperative cross-sectional area and density. Univariate analyses were performed on the percent atrophy to estimate the average changes from preoperative to postoperative. One sample t-test was used to determine if percent atrophy of the cross-sectional area or density was significantly larger than zero.

To adjust correlations among repeated measurements from the same patient and reduce confounding from covariates, a mixed effects model was fitted by setting the patients as the random effect, while including surgery laterality, initial surgical approach, any variables with p-value < 0.2 in the modeling exploration,
and their interaction as covariates. The adjusted estimations of differences in muscle atrophy among operative approaches were then obtained from the mixed effects model.

Secondary analyses were performed to compare percent atrophy with 12-month postoperative cross-sectional area and density. Patients with missing 12-month scan data were excluded from the secondary analyses.

All analyses were performed in IBM SPSS Statistics, Version 26 (IBM), and SAS, version 9.4 (SAS Institute INC). All tests of significance were two sided with the value of alpha for statistical significance of \(p < 0.05 \).

Results:

We identified 108 patients who underwent lobectomy in 2018 and had both preoperative and 6 month follow up CT scan images available (Figure 2). Three patients were excluded due to a sternotomy approach. The preoperative difference in rectus muscle area and density were 3.0 ± 91.2 mm² and 0.3 ± 10.2 HU, respectively. Six patients were excluded for baseline rectus muscle asymmetry, considered as a difference greater than 1.5 * IQR between the preoperative ipsilateral and contralateral cross-sectional area and density; chart review showed that one patient had undergone prior thoracic surgery and one patient had prior chest trauma.

Of the 99 remaining patients, 56 (56.6%) patients underwent a VATS approach, 25 (25.3%) underwent an open approach, and 18 (18.1%) underwent a robotic approach (Table 1). One robotic and two VATS cases were converted to an open approach and classified as the original approach. There was no statistical difference in demographics including age (\(p = 0.40 \)), gender (\(p = 0.18 \)), and preoperative body mass index (BMI) (\(p = 0.36 \)). Other patient characteristics, including length of stay (\(p < 0.01 \)), length of surgical case (\(p < 0.001 \)), disease indication (\(p = 0.01 \)), cancer stage (\(p = 0.05 \)), and tumor size (\(p = 0.032 \)), were
significantly different among the operative approaches (Table 1). Of the 99 patients in the study cohort, 77 (77.8%) patients had a 12-month scan. Among these, 43 (55.8%) underwent a VATS approach, 19 (24.7%) underwent an open approach, and 15 (19.5%) underwent a robotic approach.

Rectus atrophy

For all 99 patients, the ipsilateral rectus cross sectional area decreased from 508.4 mm2 preoperatively to 412.8 mm2 at 6 months after surgery, corresponding to a percent atrophy of 15.8 ± 0.29% (median: 16.3% [IQR: -4.9% to 37.0%], p < 0.001) (Table 2). For the 77 patients who had a 12 month scan available, the ipsilateral rectus cross sectional area decreased from 507.3 mm2 preoperatively to 440.0 mm2 at 12 months after surgery, corresponding to a percent atrophy of 10.9 ± 0.25% (median: 10.8% [IQR: -1.7% to 26.6%], p < 0.001). There was no significant difference in ipsilateral rectus density at 6 months or 12 months after surgery compared to preoperatively. There was no significant difference in contralateral rectus cross sectional area or density at 6 months or 12 months after surgery compared to preoperatively.

Ipsilateral rectus atrophy by operative approach

Patients who underwent a VATS approach demonstrated significant ipsilateral rectus atrophy by cross sectional area of 14.1 ± 30.6% (p = 0.001, n = 56; median [IQR]: 12.4 [-6.8%, 31.4%]) at 6 months, which decreased to 11.4 ± 24.0% (p = 0.003, n = 43; median [IQR]: 8.7% [-0.8%, 29.8%]) at 12 months (Figure 3A). Patients who underwent a robotic approach demonstrated significant ipsilateral rectus atrophy by cross sectional area of 31.4 ± 29.7% (p < 0.001, n = 18; median [IQR]: 36.8% [24.8%, 49.2%]) at 6 months, which decreased to 17.3 ± 34.6% (p = 0.074, n = 15; median [IQR]: 19.3% [5.5%, 31.6%]) at 12 months and was no longer significant. Patients who underwent an open approach demonstrated ipsilateral rectus atrophy by cross sectional area of 8.6 ± 21.4% (p = 0.056, n = 25; median [IQR]: 7.0% [-4.5%, 21.7%]) at 6 months and 4.8 ± 19.4% (p = 0.30, n = 19; median [IQR]: 4.5% [-9.6%, 12.3%]) at 12 months, but these were not significant.
Patients who underwent a robotic approach demonstrated significant ipsilateral rectus atrophy by density of 48.2 ± 83.0% (p = 0.049, n = 14; median [IQR]: 27.5% [8.8%, 71.7%]) at 12 months (Figure 3B). There were no other operative approaches with significant ipsilateral rectus atrophy by density at 6 or 12 months.

Patients who underwent a robotic approach had greater ipsilateral rectus atrophy by cross sectional area at 6 months compared to those who underwent an open approach (31.4% vs. 8.5%, difference 23% [95% CI: 1-45%], p = 0.039). There were no other differences in ipsilateral rectus atrophy by cross sectional area or density when comparing other operative approaches.

Mixed effects modeling of Change in Rectus Area at 6 Months

Although tumor size and length of case were distributed differently amongst the three study groups, neither one of these variables demonstrated any significant effect on relative atrophy (tumor size p-value = 0.26, length of case p = 0.34 in the modeling exploration) and were not included in the final random effects model. After controlling for correlations and confounding in the mixed effects model, patients who underwent a robotic approach had significantly greater ipsilateral rectus atrophy by cross sectional area compared to those who underwent an open approach (31.4% vs. 8.5%, difference 23% [95% CI, 6-40%], p=0.008) and VATS approach (31.4% vs. 14.1%, difference 18% [95% CI: 3-33%], p = 0.021) at 6 months (Table 3). There was no significant difference in ipsilateral rectus atrophy by cross sectional between VATS and open approaches at 6 months. There was no significant contralateral rectus atrophy by cross sectional area in this model. See Figure 4 for a graphical abstract of the study.

Discussion:

Robotic surgery was associated with a greater decrease in the ipsilateral cross-sectional area of the rectus abdominis muscle at 6 months after surgery compared to both open and VATS approaches. By the 12 month surveillance scan, robotic surgery was associated with a decrease in the ipsilateral density of the
rectus muscle. These results suggest that robotic surgery, when compared with other operative approaches, may result in disproportionate atrophy and nerve injury to the rectus abdominis muscle. As robotic lobectomy becomes more common, these findings will help surgeons counsel patients on postoperative recovery.

Intercostal nerve damage can develop due to the compression of the intercostal nerve during port placement for a VATS or robotic approach or the use of a retractor during an open approach. In many cases, the nerve conduction block due to nerve damage can persist even after the removal of the port or retractor. This nerve damage can lead to several postoperative complications, including numbness, pseudohernias, and chronic pain around the rectus abdominis. Additionally, previous studies have identified neuropathic pain as a major contributor to chronic postoperative pain. It is unclear why pseudohernias develop in some patients while not in others, and in different areas of the abdominal wall and flank. Furthermore, in a questionnaire study by Maguire et al., 40% of patients reported that postoperative pain limits their daily activities. This inactivity after surgery may lead to worsening skeletal muscle loss which is associated with worse postoperative outcomes.

Postoperative pseudohernias, also referred to as ‘flank bulges’, have been described across many specialties that employ flank incisions. These pseudohernias are characterized by local nerve injury and muscle weakness without an accompanying hernia defect. However, there have only been a few studies that have evaluated nerve damage and its effect on rectus abdominis atrophy and pseudohernias following thoracic surgery. Prior to this study, rectus atrophy had not been described in any case series nor comparison. In previous studies, nerve damage was assessed by either using electrical stimulation to test the perception threshold before and after surgery or the Short-form McGill Pain Questionnaire (SF-MPQ). The findings from these studies found that nerve damage was more severe in a VATS approach than in an open approach. Our current study’s evaluation of rectus atrophy does not appear to show a similar pattern, given that our results demonstrated no significant differences between
open and VATS approaches when assessing atrophy outcomes. We suspect the observed increase in atrophy among patients undergoing robotic surgery may be a result of the more inferior port placement which occupies a larger number of rib spaces compared to VATS approaches – potentially injuring more nerves that serve the rectus abdominis. Additionally, patients with rectus nerve damage may also develop the flank bulge, making them more aware of the nerve damage. Our practice is aware of at least two patients whose right-sided pain and tenderness were substantial enough to prompt clinical evaluation for cholecystitis several months after robotic thoracic surgery.

This study has a few limitations. First, this is a single institutional retrospective study with a small sample size and a limited number of thoracic surgeons. Second, we do not know whether the degree of rectus muscle atrophy correlates to symptoms such as neuropathic pain or abdominal wall bulging. Further work on this topic is necessary to better understand the relationship between the degree of rectus atrophy and the development of clinical symptoms. Lastly, we have limited long-term follow up scans which limits our ability to determine if the atrophy eventually resolves. This is important to consider as nerve recovery can take as long as several months to years.

Conclusion:

In this retrospective study, robotic thoracic surgery was associated with greater ipsilateral rectus muscle atrophy when compared to both open and VATS surgery. This could be a result of more inferior port placement affecting intercostal nerves that innervate the abdominal wall. Additional work should be done to determine the impact of alternative port placement on rectus atrophy. These findings should be correlated with clinical symptoms and followed to assess for resolution or persistence. Further evaluation of the incidence and attendant impacts of this atrophy phenotype will better allow surgeons to adequately counsel patients regarding minimally invasive operative approaches.
Acknowledgements: None
References:

Table 1. Patient characteristics.

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Total (N=99)</th>
<th>VATS (n=56)</th>
<th>Open (n=25)</th>
<th>Robot (n=18)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), median (IQR)</td>
<td>67 (59.74)</td>
<td>68 (62.74)</td>
<td>65 (55.74)</td>
<td>66 (62.74)</td>
<td>0.40 *</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.18 **</td>
</tr>
<tr>
<td>Male</td>
<td>43 (43.4%)</td>
<td>24 (42.9%)</td>
<td>14 (56.0%)</td>
<td>5 (27.8%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>56 (56.6%)</td>
<td>32 (57.1%)</td>
<td>11 (44.0%)</td>
<td>13 (72.2%)</td>
<td></td>
</tr>
<tr>
<td>Pre-op BMI (kg/m²), median (IQR)</td>
<td>25.6 (22.9, 30.6)</td>
<td>24.9 (22.4, 30.5)</td>
<td>27.0 (23.4, 33.0)</td>
<td>26.2 (23.7, 29.0)</td>
<td>0.362 *</td>
</tr>
<tr>
<td>Length of stay (days), median (IQR)</td>
<td>4 (3.5)</td>
<td>3 (3.4)</td>
<td>4 (4.6)</td>
<td>4 (3.5)</td>
<td>0.002 *</td>
</tr>
<tr>
<td>Length of Surgical Case (min), median (IQR)</td>
<td>232 (188, 308)</td>
<td>206.5 (164.5, 262)</td>
<td>266 (227, 343)</td>
<td>317.5 (241, 362)</td>
<td><0.001 *</td>
</tr>
<tr>
<td>Disease Indication, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.012 ***</td>
</tr>
<tr>
<td>Primary lung cancer</td>
<td>81 (82.7%)</td>
<td>50 (89.3%)</td>
<td>17 (68.0%)</td>
<td>14 (82.4%)</td>
<td></td>
</tr>
<tr>
<td>Lung Metastases</td>
<td>14 (14.3%)</td>
<td>5 (8.9%)</td>
<td>8 (32.0%)</td>
<td>1 (5.9%)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>3 (3.1%)</td>
<td>1 (1.8%)</td>
<td>0 (0.0%)</td>
<td>2 (11.8%)</td>
<td></td>
</tr>
<tr>
<td>Stage, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.048 ***</td>
</tr>
<tr>
<td>Stage I</td>
<td>59 (59.6%)</td>
<td>40 (71.4%)</td>
<td>9 (36.0%)</td>
<td>10 (55.6%)</td>
<td></td>
</tr>
<tr>
<td>Stage II</td>
<td>22 (22.2%)</td>
<td>10 (17.9%)</td>
<td>7 (28.0%)</td>
<td>5 (27.8%)</td>
<td></td>
</tr>
<tr>
<td>Stage III</td>
<td>3 (3.0%)</td>
<td>1 (1.8%)</td>
<td>2 (8.0%)</td>
<td>0 (0.0%)</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>15 (15.2%)</td>
<td>5 (8.9%)</td>
<td>7 (28.0%)</td>
<td>3 (16.7%)</td>
<td></td>
</tr>
<tr>
<td>Tumor Size (cm), median (IQR)</td>
<td>2.5 (1.7, 3.6)</td>
<td>2.4 (1.5, 3.6)</td>
<td>3.5 (2.2, 5.5)</td>
<td>2.2 (1.8, 2.9)</td>
<td>0.032 *</td>
</tr>
</tbody>
</table>

VATS: video-assisted thoracoscopic surgery

* P-value from Kruskal-Wallis Test
** P-value from Chi-square Test
*** P-value from Fisher's Exact Test
Table 2. Atrophy between preoperative and postoperative rectus area and density among all operative approaches.

<table>
<thead>
<tr>
<th>Surgery Laterality</th>
<th>Preoperative</th>
<th>Postoperative</th>
<th>Percent Atrophy (relative change)</th>
<th>P (Atrophy ≠ 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (mm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipsilateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>508.4 ± 217.0</td>
<td>412.8 ± 210.2</td>
<td>15.8% ± 0.29</td>
<td><0.001*</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>469.3 (346.9, 623.3)</td>
<td>372.7 (247.4, 546.1)</td>
<td>16.3% (-4.9%, 37.0%)</td>
<td></td>
</tr>
<tr>
<td>Contralateral</td>
<td></td>
<td></td>
<td></td>
<td>0.973</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>511.4 ± 223.1</td>
<td>494.1 ± 206.1</td>
<td>-0.1% ± 0.25</td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>475.1 (340.4, 644.7)</td>
<td>470.7 (330.4, 616.3)</td>
<td>1.6% (-8.3%, 12.9%)</td>
<td></td>
</tr>
<tr>
<td>Density (HU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipsilateral</td>
<td></td>
<td></td>
<td></td>
<td>0.273</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>30.6 ± 18.5</td>
<td>24.5 ± 19.0</td>
<td>16.8% ± 1.52</td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>33.9 (23.3, 42.1)</td>
<td>27.7 (16.7, 37.5)</td>
<td>17.3% (-10.8%, 40.7%)</td>
<td></td>
</tr>
<tr>
<td>Contralateral</td>
<td></td>
<td></td>
<td></td>
<td>0.209</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>30.8 ± 10.0</td>
<td>32.2 ± 15.9</td>
<td>-29.4% ± 2.31</td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>33.5 (19.4, 44.1)</td>
<td>35.5 (24.6, 42.2)</td>
<td>1.0% (-32.3%, 21.3%)</td>
<td></td>
</tr>
<tr>
<td>12-month follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area (mm²)</td>
<td></td>
<td></td>
<td></td>
<td><0.001*</td>
</tr>
<tr>
<td>Ipsilateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>507.3 ± 209.3</td>
<td>440.0 ± 203.1</td>
<td>10.9% ± 0.25</td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>469.2 (351.0, 618.8)</td>
<td>373.0 (293.2, 548.7)</td>
<td>10.8% (-1.7%, 26.6%)</td>
<td></td>
</tr>
<tr>
<td>Contralateral</td>
<td></td>
<td></td>
<td></td>
<td>0.972</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>505.3 ± 209.4</td>
<td>490.9 / 219.3</td>
<td>-0.1% ± 0.30</td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>476.5 (349.4, 644.7)</td>
<td>449.4 (349.1, 605.7)</td>
<td>3.4% (-5.3%, 13.6%)</td>
<td></td>
</tr>
<tr>
<td>Density (HU)</td>
<td></td>
<td></td>
<td></td>
<td>0.484</td>
</tr>
<tr>
<td>Ipsilateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>32.7 ± 15.4</td>
<td>28.9 ± 17.7</td>
<td>-25.0% ± 3.10</td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>33.9 (24.9, 42.1)</td>
<td>31.1 (20.4, 38.7)</td>
<td>13.8% (-17.2%, 31.9%)</td>
<td></td>
</tr>
<tr>
<td>Contralateral</td>
<td></td>
<td></td>
<td></td>
<td>0.130</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>32.4 ± 16.0</td>
<td>32.8 ± 15.3</td>
<td>-37.8% ± 2.15</td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>34.0 (21.8, 44.6)</td>
<td>35.0 (24.6, 42.6)</td>
<td>1.3% (-25.4%, 22.1%)</td>
<td></td>
</tr>
</tbody>
</table>

HU: Hounsfield Units
Atrophy = (Preop – Postop)/Preop
* P value < 0.05, atrophy is significantly different from zero
Table 3. Mixed effect model estimates of rectus area atrophy

| Difference in Atrophy Comparing Operative Approaches | Ipsilateral | | | Contralateral | |
|---|---|---|---|---|
| Atrophy = (Preop – Postop)/Preop | Estimated Difference in Atrophy | P | Estimated Difference in Atrophy | P |
| Open (ref.) vs Robot, (95% CI) | -0.23 (-0.40, -0.06) | 0.008* | 0.04 (-0.13, 0.21) | 0.62 |
| Open (ref.) vs VATS, (95% CI) | -0.05 (-0.18, 0.07) | 0.40 | 0.06 (-0.07, 0.19) | 0.40 |
| Robot (ref.) vs VATS, (95% CI) | 0.18 (0.03, 0.33) | 0.021* | 0.01 (-0.14, 0.16) | 0.87 |

VATS: video-assisted thoracoscopic surgery

1. Estimated Difference in Atrophy = (Atrophy)\text{Approach, Comparative} – (Atrophy)\text{Approach, Reference}

2. Negative value of estimated difference denotes greater atrophy.

3. * $p < 0.05$
Figure Legend

Graphical Abstract. Greater ipsilateral rectus muscle atrophy after robotic thoracic surgery compared to open and VATS approaches

Figure 1. Representative example of incision and port placement sites for A) thoracotomy, B) video-assisted thoracoscopic surgery, and C) robot-assisted thoracoscopic surgery approach

Figure 2. Representative example of rectus abdominis measurement on axial chest computed tomography (CT) scans, A) preoperatively and B) 6-months postoperatively.

Figure 3. Percent atrophy in the ipsilateral rectus abdominis muscle using A) cross-sectional area and B) density ratios, by operative approach.

Figure 4. Graphical Abstract
A Percent Rectus Atrophy Compared to Pre-op – Ipsilateral Rectus **Area**

![Bar chart showing percent rectus atrophy compared to pre-op for Ipsilateral Rectus **Area** across different procedures (Open, VATS, Robot) at 6 and 12 months post-op.](chartA.png)

B Percent Rectus Atrophy Compared to Pre-op – Ipsilateral Rectus **Density**

![Bar chart showing percent rectus atrophy compared to pre-op for Ipsilateral Rectus **Density** across different procedures (Open, VATS, Robot) at 6 and 12 months post-op.](chartB.png)
Greater ipsilateral rectus muscle atrophy after robotic thoracic surgery compared to open and VATS approaches

Methods
- Lobectomies in 2018
 - Open: n=25
 - VATS: n=56
 - Robotic: n=18

Results
- Significantly more atrophy at 6 months after robotic surgery when compared to open (31.4% vs 9.5%, p=0.049) and VATS (31.4% vs 14.1%, p=0.021).
- No significant differences in cross-sectional area between open and VATS approach.
- Mixed-effects model demonstrated significantly more atrophy after robotic surgery when compared to open (p=0.008) and VATS (p=0.021).

Implications
- Findings should be correlated to clinical symptoms and followed to assess for resolution.
- Surgeons can better counsel patients on minimally invasive operative approaches.

VATS = Video-assisted thoracoscopic surgery, CT = Computed tomography