Endovascular occlusion of segmental arteries feeding the anterior spinal artery to stage endovascular thoracoabdominal aortic repair

Daniela Branzan, MD, PhD, Antonia Geisler, MD, Sabine Steiner, MD, PhD, Dierk Scheinert, MD, PhD, Katharina Funk, MD, Andrej Schmidt, MD, PhD

PII: S2666-2736(24)00051-2
DOI: https://doi.org/10.1016/j.xjon.2024.02.016
Reference: XJON 1023

To appear in: JTCVS Open

Received Date: 24 November 2023
Revised Date: 23 January 2024
Accepted Date: 7 February 2024

Please cite this article as: Branzan D, Geisler A, Steiner S, Scheinert D, Funk K, Schmidt A, Endovascular occlusion of segmental arteries feeding the anterior spinal artery to stage endovascular thoracoabdominal aortic repair, JTCVS Open (2024), doi: https://doi.org/10.1016/j.xjon.2024.02.016.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2024 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Endovascular occlusion of segmental arteries feeding the anterior spinal artery to stage endovascular thoracoabdominal aortic repair

TAAA
N = 54

Angiography of SA-ARMA-ASA

MISACE of SA-ARMA-ASA

EVAR of TAAA

Follow-up
No permanent SCI

Minimally invasive coil embolization of segmental arteries (MISACE) feeding the anterior radiculomedullary artery (ARMA) and anterior spinal artery (ASA) can be safely performed and may drastically reduce the rate of spinal cord ischemia (SCI) after the endovascular repair (EVAR) of thoracoabdominal aortic aneurysms (TAAA).
Endovascular occlusion of segmental arteries feeding the anterior spinal artery to stage endovascular thoracoabdominal aortic repair

Daniela Branzan MD, PhDab; Antonia Geisler MDa; Sabine Steiner MD, PhDbc; Dierk Scheinert MD, PhDc; Katharina Funk MDa; Andrej Schmidt MD, PhDc

a. Department of Vascular Surgery, University Hospital Leipzig, Germany
b. Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
c. Division of Interventional Angiology, Department of Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, Germany

Disclosures: \textbf{DB}: grants: Artivion, Bentley Innomed, COOK Medical, Endologix, Getinge, Medtronic; \textbf{SS}: speakers’ honorarium: Bayer Medical, research funding: C.R. Bard; \textbf{DS}: consultant or advisory board member for Abbott, Biotronik, Boston Scientific, Cook Medical, Cordis, BD, Gardia Medical, Medtronic, TriReme Medical, and Upstream Peripheral Technologies; \textbf{AS}: Consulting/speakers honorarium: Abbott Vascular, BD, Boston Scientific, Cook, Cardinal Health/Cordis, Phillips, Upstream Peripheral. The remaining authors have nothing to disclose.

Funding: none
Corresponding Author

Daniela Branzan, MD

Department of Vascular Surgery, University Hospital Leipzig

Liebigstrasse 20, Haus 4, 04103, Leipzig, Germany

Fax: +49 (341)9717209; Tel: +49 (341)9717200

E-Mail: daniela.branzan@medizin.uni-leipzig.de

Informed Consent Statement: Due to the retrospective nature of the study, informed consent of the patients was not required because the study analyzed anonymous clinical data of the patients.

Central Picture Legend

Segmental Artery (SA) feeding the anterior spinal artery via the collateral network

Total word count: 3,500
Glossary of Abbreviations

ARMA: anterior radiculomedullary artery
ASA: anterior spinal artery
CN: collateral network
CSF: cerebrospinal fluid
CTA: computer tomography angiography
ER: endovascular aortic repair
ICU: intensive care unit
MISACE: minimally invasive segmental artery coil embolization
SA: segmental artery
SCI: spinal cord ischemia
TAAA: thoracoabdominal aortic aneurysm
Central Message

Endovascular occlusion of segmental arteries feeding the anterior radiculomedullary artery and the anterior spinal artery to stage endovascular thoracoabdominal aortic repair is safe and effective.

Perspective Statement

Endovascular occlusion of segmental arteries feeding the anterior radiculomedullary artery and the anterior spinal artery as a staging procedure of endovascular repair of thoracoabdominal aortic aneurysms can be safely performed and is associated with low rates of spinal cord ischemia after endovascular repair of extensive thoracoabdominal aortic aneurysms, suggesting its potential beneficial effect.
Structured Abstract

Objective: Minimally invasive segmental artery coil embolization (MISACE) was introduced to prevent spinal cord ischemia (SCI) after endovascular repair (ER) of thoracoabdominal aortic aneurysms (TAAA). There is no consensus on whether the endovascular occlusion of segmental arteries (SA) feeding directly the anterior radiculomedullary artery (ARMA) and anterior spinal artery (ASA) can be safely performed without causing SCI. Our aim was to investigate the feasibility and clinical impact of endovascular occlusion of SAs supplying ASA during MISACE in patients with TAAA.

Methods: Between January 2018 and July 2020, 54 patients (36 male; mean age: 71.1±9.3 years) underwent direct embolization of SAs feeding the ARMA prior to ER of TAAA. End points included technical success of MISACE of SA-ARMA, neurological complications, and in-hospital mortality after MISACE and ER of TAAA.

Results: The TAAA classification was type I (n=8), type II (n=24), type III (n=11), type IV (n=11). During MISACE 388 SAs were occluded, each patient having 7.2±3.1 coiled SAs occluding 64.5% (25%-100%) of open SAs within the treated aortic segment. Altogether 66 ARMAs were seen originating between Th8 and L3 levels from 85 (21.9%) SAs. In 10 (18.5%) patients two large ARMAs were identified, and one (1.9%) patient showed three ARMAs on the spinal arteriography. No SCI and no procedure-related complications occurred after MISACE. After 47.9±39.4 days, all patients received ER of their TAAA. There was no in-hospital mortality. One male patient developed incomplete temporary SCI after ER.

Conclusions: MISACE of SA feeding the ASA in patients with TAAA to prevent SCI after ER is feasible and clinically safe.
Keywords: thoraco-abdominal aortic aneurysm, spinal cord ischemia, segmental artery, great anterior radiculomedullary artery, coil embolization
Endovascular repair (ER) of thoracoabdominal aortic aneurysms (TAAA) has been highly successful over the past decade, leading to favorable perioperative outcomes. However, ischemic spinal cord injury (SCI) remains a devastating complication after ER with rates ranging from 4% to 31% affecting negatively the postoperative survival. ER of TAAA significantly compromises spinal cord blood supply through extensive, sudden, and simultaneous occlusion of multiple segmental arteries (SAs), but results in a lower rate of SCI compared with open repair of TAAA, supporting the concept of collateral network (CN) of spinal cord perfusion. Although preservation of SA by reimplantation is recommended in open TAAA repair to reduce SCI, reattachment of SA during ER is technically challenging and has shown limited clinical benefits. Therefore, techniques to prevent SCI have focused mostly on indirectly improving spinal cord perfusion by increasing mean arterial blood pressure, cerebrospinal fluid drainage, preserving subclavian and hypogastric arteries, and staging SA sacrifice. Partial stenting of the thoracic aorta, transient perfusion of the aneurysm sac through a branch intentionally left open, and minimally invasive segmental artery coil embolization (MISACE) were used to stage aortic repair. MISACE followed by endovascular aneurysm exclusion has been shown to promisingly reduce paraparesis and paraplegia after ER of extensive TAAA. The concept of MISACE is based on the theory of CN of blood supply to the spinal cord, according to which any SA can supply blood to the spinal cord and can develop into collateral circulation to the anterior spinal artery (ASA). Thus, MISACE occludes only the main trunk of the SA, allowing regeneration and new development of arterial collaterals to the spinal cord fed by alternative sources of inflow such as the subclavian and hypogastric arteries. Therefore, the assumption that maintaining direct blood supply to the ASA from the aorta via segmental artery and the great anterior
radiculomedullary artery (ARMA) is an important factor in reducing the risk of SCI has been questioned. Therefore, the direct coverage of the SA origin during aortic ER and MISACE has been advocated11. There is no consensus on whether SAs feeding the great ARMA and thus ASA can be safely occluded without causing SCI. Furthermore, the effects of direct occlusion of SA feeding the ARMA and ASA have not been studied in detail. As the angiographic detection of SA supplying the ASA via the ARMA is technically feasible12, we aimed to investigate the feasibility and the clinical impact of MISACE of SA supplying the ASA in patients with TAAA to prevent SCI after endovascular treatment.

Methods

Study design and patients’ selection

In this retrospective single-center study, we evaluated early outcomes of pre-emptive selective percutaneous occlusion of the ostium of SA feeding the ASA in patients with TAAA to prevent SCI between January 2018 and July 2020. Patients with atherosclerotic and post-dissection TAAA >60mm and rapid aneurysm enlargement (>10mm/year) and with penetrating aortic ulcers (PAU) anatomically suitable for ER were included in the study. Pre-emptive embolization of SAs was not performed especially in patients with symptomatic and ruptured aortic aneurysms. The inclusion and the exclusion criteria for the study are detailed in Table 1. Overall, 148 patients underwent ER of their TAAA during the study period. Due to the inclusion in another clinical trial, 12 patients were excluded from the present analysis. Of the remaining 136 patients, 104 patients underwent MISACE prior to ER to prevent SCI as part of our clinical routine, and we identified 54 (51.9\%) patients with pre-emptive embolization of SA supplying the ASA. Due to the acute presentation, 32 patients were excluded from MISACE prior to ER and 50 patients had not ARMA-ASA on the spinal angiogram (Figure 1). In the group with no ARMA-ASA, the incidence of SCI after ER
was 0%. Aneurysms were classified according to the Crawford classification of the extent of endovascular aortic repair. The study was performed in accordance with the principles of the Helsinki Declaration. The Institutional Review Board approved the analysis of the retrospective data set (AZ 319-15/Amendment May 4th, 2016). Due to the retrospective nature of the study, informed consent of the patients was not required because the study analyzed anonymous clinical data of the patients.

Spinal Arteriography and MISACE Technique

Based on 1mm-sliced computer tomography angiography (CTA), patent SAs were identified at the extent of the planned aortic repair, including the proximal and distal aortic neck, in order to be occluded with MISACE. The patent SAs were counted twice in every patient by two different investigators (D.B. and A.G.). Patency of SAs was defined as evidence of perfusion of the vessel from the aortic lumen. The technique of catheterization and opacification of spinal cord vasculature, and the MISACE technique have been described in detail elsewhere. Briefly, the procedure was performed in local anesthesia without cerebrospinal fluid (CSF) drainage and under continuous monitoring of the neurologic function 48-72 hours after the procedure. The antihypertensive drugs were temporarily paused prior to the procedure to allow permissive hypertension. MISACE consisted of selective catheterization by the femoral route followed by the manual injection of contrast material for the imaging of thoracic and lumbar SAs until the arteries that supplied the ASA were identified. The goal was the delineation of the aortic branches to the ASA at the level of the aorta to be covered by the stentgraft, and to find which one, if any, contained a branch typical of the great ARMA (Figure 2). The criteria for the visualization of the great ARMA artery were the presence of a branching artery with an oblique course along the anterior surface of the spinal cord with a hairpin-shaped connection to the ASA (Figure 3A). The number
of ARMA feeding arteries to the thoracolumbar ASA was assessed. The branching level of the ARMA was determined based on the anatomic level of the SA that was seen supplying the ARMA. After angiography, using coils or microvascular plugs, the ostial segment of the SA was occluded closest to its aortic origin to theoretically allow any collateralization to maintain flow into the ARMA. Maximum 6SAs were planned to be occluded per session to avoid iatrogenic SCI (Figure 2). Since the procedure’s goal was to occlude all patent SAs at the aortic level to be covered by the stentgraft, multiple MISACE sessions were scheduled in some patients with a clinical assessment of spinal cord viability between stages to prevent a critical acute reduction in spinal cord perfusion. The time interval between staging sessions was determined based on the patients’ anatomy, including aneurysm size, the number of patent SAs at the aortic segment to be covered by the stentgraft, kidney function, and recovery time. Drawing from insights gained in experimental studies, we opted for a minimum interval of at least one week between two MISACE sessions to allow sufficient time for arterial priming of the CN to occur. Standardized post-interventional management, including neurological examination, was performed as previously published.

Endovascular repair of the aneurysm

Endovascular aneurysm repair after MISACE has been previously described. The complete exclusion of the aneurysm was performed no sooner than seven days after the MISACE to allow the preconditioning of the CN. Briefly, implantation of standard and custom-made stentgrafts was performed no sooner than 5 days after MISACE, to permit the priming of the spinal cord CN (Figure 2). The endovascular procedures of the aneurysm exclusion were performed in general anesthesia and classic perioperative neuroprotective strategies were used as per institutional protocol.
Perioperative management and postoperative evaluation

All patients underwent standardized post-operative management with at least 24 h monitoring in the intensive care unit (ICU). No prophylactic CSF drainage was used. The mean arterial blood pressure was kept at >80 mmHg and the administration of any antihypertensive drugs was temporarily paused. Transfusion of blood products was indicated in the first 48 hours after the procedure to keep a target haemoglobin≥10 mg/dl. The neurological examination was performed prior to intervention, every six hours during the ICU stay and daily on the normal ward. New neurological changes that might indicate a new neurological event triggered acquisition of brain and spinal cord imaging. Postoperative magnetic resonance imaging was performed when not contraindicated. In case of SCI after ER of TAAA, therapeutic CSF drainage was recommended. Contrast enhanced ultrasound and CTA were performed routinely before discharge.

Endpoints

We analyzed the safety and technical feasibility of MISACE of SAs directly feeding the ASA. Study endpoints were in-hospital rate of SCI and all-cause mortality both after MISACE and after ER of TAA and TAAA.

Data collection and statistical analysis

Demographics, medical history, and procedure-related data were extracted for analysis from our electronic database. Complications were defined using the Society for Vascular Surgery’s reporting standards for endovascular aortic aneurysm repair. Preoperative and postoperative imaging studies were analyzed with multiplanar reconstruction on a workstation (3mensio Medical Imaging, Bilthoven, the Netherlands). Data were analyzed using SPSS version 20.0 (IBM,
Armonk, NY, USA). Categorical variables are presented as number (percentages), and continuous variables are presented as mean ± standard deviation or median (range).

Results

Patient Demographics

We identified 54 consecutive eligible patients, 36 males, mean age 71.1 ± 9.3 years treated with MISACE of SAs directly supplying the ASA to prevent SCI after ER of TAAA. Patients’ demographics and indications for treatment are summarized in Table 2. An average of 11.9 ± 4.2 SAs (median: 12; range: 3-22) were found patent on CTA and were to be covered by the stentgraft at the end of the ER of TAAA.

Anatomy of segmental arteries feeding the anterior spinal artery and MISACE

A total of 388 SAs were occluded by MISACE with each patient having a mean of 7.2 ± 3.1 coiled SAs (median: 7; range: 2-16), occluding 64.5% (range: 25%-100%) of direct open segmental arterial inflow to the spinal cord within the treated aortic segment. The great ARMA was found in 85 (21.9%) of 388 coiled SAs. The origin of ARMA was located between Th8 and L3 levels. ARMA arose on the left side in 64 (75.3%) of the vessels (Figure 4). Visualization of ARMA was direct through the injected SA in 64 (75.3%) vessels (Figure 3A) and indirect via anastomotic circulation in 21 (24.7%) vessels. Anastomoses were longitudinal with an immediately adjacent SA in 14 (16.5%) vessels (Figure 3B), and transverse with a contralateral SA in 7 (8.2%) vessels (Figure 3C). In 32 (59.2%) cases, ARMA was visualized from only one SA, in 14 (25.9%) cases the same ARMA was visualized after arteriography of two different SAs, in 7 (12.9%) cases after arteriography of 3 SAs and in one (1.9%) case after arteriography of 4 SAs. Altogether, we identified 66 great ARMAs. In 10 (18.5%) patients, two large ARMAs were identified prior to
MISACE, and one (1.9%) patient showed three ARMAs on the spinal arteriography. Five (45.4%) of the eleven patients with more than two ARMAs had TAAA Crawford type II. In 43 patients (79.6%), the great ARMA was the only artery that supplied the ASA at the aortic level to be stented. During the first MISACE session, 42 (49.4%) of the 85 SAs feeding the ARMA were coiled, during the second MISACE session 26 (30.6%) SAs, 14 (16.5%) SAs were coiled during the third session, and 3 (3.5%) SAs during the fourth MISACE session. Altogether 136 sessions of MISACE were performed: 8 patients received one session, 20 patients received two sessions, 19 patients three sessions, 4 patients four sessions and 3 patients five sessions of coil embolization. The MISACE sessions lasted in mean 58.7 ± 31.1 minutes, using 28.6 ± 24.2ml of iodine contrast media, and mean dose area product of 122.2 ± 77.6 Gycm².

Neurological complications and interval management after MISACE

No major procedure-related complications occurred during and after MISACE, especially no neurological deficit such as SCI and stroke. No alteration of the renal function after MISACE was recorded. In two patients, two SAs planned to be coiled were left open due to the unstable position of the catheters caused by extreme aortic kinking and large aneurysm diameter. After 20 (14.7%) MISACE sessions patients complained of backpain most likely indicating skeletal muscle ischemia, which was treated with non-steroidal anti-inflammatory drugs. The hospital-stay associated with MISACE averaged 4.8 ± 3.1 days.

Endovascular repair of TAA and TAAA

After a mean period of 47.9 ± 39.4 days after MISACE the ER of the aortic aneurysm was performed. All patients were treated in general anesthesia using percutaneous femoral access. A total of 38 custom-made fenestrated and branched stentgrafts and 16 commercially available aortic
stentgrafts were implanted. A total of 150 visceral arteries were incorporated in stentgrafts with technical success of visceral artery stenting of 99.3% (149/150) since the celiac trunk was not connected to the stentgraft in one case. The subclavian artery was patent in all cases and one of the hypogastric arteries was occluded in 11 (20.4%) patients. Total endovascular operating time was 121.2 ± 83.3 min, and radiation time 38.7 ± 23.8 min with radiation dose of 255.5 ± 174.5 Gcm². The length of the aortic coverage was in mean 243.7 ± 63.3 mm.

In-hospital neurological outcomes after ER of TAAA

No in hospital mortality after ER of TAAA occurred. One (1.8%) patient with a post-dissection type II TAAA developed incomplete transient SCI. This 61-year-old male patient, having 21 open SAs in the aortic area to be stented and great ARMA coming from Th10 on the right side, received MISACE of 7SAs during three sessions. Five days after MISACE, ER of TAAA was performed in one session covering 355mm of the aorta. One day after the procedure, he developed paraparesis and impairment of bladder control. After refusing therapeutic CSF drainage, the patient underwent intensive conservative treatment exclusively. He was discharged on the 16th postoperative day, with minimal walking impairment and with complete restoration of the bladder function. At one-year follow-up, the patient demonstrated full recovery of lower limb motor function and restored bladder control. Ischemic stroke was recorded in one (1.8%) patient most likely due to his shaggy aorta. In-hospital stay after ER of TAAA averaged 9.8 ± 6.5 days.

Discussion

SCI caused by extensive coverage of SAs after ER of TAAA remains the most feared complication with an incidence of up to 20% of patients with Type II TAAA². Treatment focus has centered on strategies to prevent SCI such as permissive hypertension, cerebrospinal fluid drainage, and
In a recent monocentric retrospective study, MISACE, without knowledge of location of great ARMA, to precondition the paraspinous CN as a staging procedure for ER of TAAA, has been shown to be clinically feasible and to reduce paraparesis and paraplegia after total ER of TAAA. Nevertheless, there is still paucity of consensus on whether SAs feeding directly the ARMA can be safely occluded in patients with TAAA without causing SCI, since data is scarce and comes mostly from neuroradiological studies. Salame et al. published on three patients with embolization of 3 pairs of SA to treat vertebral tumors, occluding inclusively the great ARMA, without causing postoperative neurological deterioration.

Until now, SAs reimplantation during open TAAA repair remains the most widespread strategy to avoid postoperative SCI. Various factors contribute to SCI, such as extensive coverage of aorta in ER; and, in open repair, prolonged aortic cross-clamp time and fluctuations in body temperature, often resulting in permanent paraplegia. The CN concept proposes a strategy to alleviate acute perfusion loss through staged occlusion of SAs with MISACE. This approach allows for regeneration and the de novo generation of arterial collaterals supported by alternative inflow sources, such as subclavian and hypogastric arteries in patients with TAAA, regardless of the type of planned repair. We currently lack clinical experience with MISACE in patients with known or suspected connective tissue disease. We demonstrated in the present study the feasibility and safety of MISACE of SA directly supplying the ARMA and ASA in patients with TAAA to prevent SCI after ER. In this cohort of 54 patients, 66 ARMAs were identified originating from 85 (21.9%) SAs out of 388 SAs coiled in the aortic area to be stented. The rate of ARMA-ASA identification on the spinal arteriography was lower than data published by Kieffer et al. When we could not locate a major radicular contribution to ASA originating from the aneurysm, we assumed that collateral vessels had developed from other vascular territories, reflecting the natural process of
preconditioning of the CN in patients with aneurysm-related occluded SAs6. Most of ARMAs’ origins (75.3\%) were situated on the left side between Th8 and L3, similar to previously published data12. Furthermore, 20.4\% of our patients had more than two ARMAs feeding the ASA in the aortic area to be stented during spinal cord angiography and 45.4\% of these patients had a type II TAAA. Interestingly, in 40.8\% of cases the same ARMA was visualized after dye injection in more than one SA with a maximum of 4SAs feeding the same ARMA. This implies that the development of atherosclerosis or mural thrombus especially in patients with TAAA may occlude some originally important SAs, leaving the spinal cord dependent on diverse collateral arteries. This also underlines the fact that spinal cord supply is unlikely to depend on a single SA and the occlusion of the SA may not be the only causative factor of SCI. Nevertheless, the detection of great ARMA can be difficult because of various levels of its origin, its small size, the amount of time needed to obtain the angiogram17. Fukui et al demonstrated that collateral arteries connect to ARMA after stentgraft occlusion of the SA feeding the ARMA in patients with TAAA11. Three patterns of collateral circulation have been described, the most important being the intersegmental type11. In 24.7\% of our cases ARMA was visualized via longitudinal and transversal intersegmental anastomotic circulation. The importance of these contributions to the spinal cord circulation superimposed on a background of anatomic diversity creates difficulties in the management of patients with extensive aneurysmal disease. However, the message from our clinical experience is that the arterial supply to the spinal cord is adaptable. Thus, after the MISACE of all detected SAs feeding the ARMA we encountered no SCI in our cohort. Furthermore, no major procedure-related complications were recorded in the present study, underlying the safety profile of this new minimally invasive staging method for ER of TAAA. Nonetheless, there are distinctions in the approach to patients with atherosclerotic disease and
penetrating aortic ulcers (PAUs) when compared to those with post-dissection aneurysms. In cases of atherosclerotic disease and PAUs, there typically exists an intraluminal thrombotic component covering the origin of some SAs. This process acts as an ischemic preconditioning of the CN. Despite the potentially lower number of SAs to be occluded, the presence of a large intraluminal thrombus raises the risk of catheter manipulation leading to embolization of material into the SAs, causing iatrogenic SCI. Therefore, MISACE is not recommended in case of "shaggy aorta." Conversely, the risk of peripheral thrombotic embolization is lower in aortic dissection, but the number of SAs to be embolized is higher due to the smaller amount of thrombus. Furthermore, due to double aortic lumen after dissection, SAs originating from both aortic lumens should be embolized to achieve the desired effect of MISACE. Consequently, the number of MISACE sessions is higher in patients presenting with post-dissection aortic aneurysms. The only SCI encountered after ER of aortic aneurysms was partial and transient, most likely due to the extensive coverage of the aorta after occluding only 30% of the patients SAs in the aortic area to be covered by the stentgraft. This low rate of SCI overlaps with the previously published effect of MISACE on the rate of neurological complications after ER of TAAA10, highlighting the potential role of this staging method.

MISACE may have a dramatic impact on the patients’ quality of life by saving them from a wheelchair after developing SCI, and also an impact on financial systems through savings in three important aspects: lower care costs, lower pay-outs in disability insurance and loss of output in economic systems because of resulting unemployment18. Furthermore, MISACE may reduce the risk of complications after aneurysm repair and in particular, avoid type II endoleaks, and hence reduce the need for re-interventions19.

Embolization of SAs is a routine procedure for interventional radiologists16. Although this technique has become part of the repertoire of vascular surgeons with the introduction of embolization of aneurysmal sac branches prior to ER to prevent type II endoleaks19, we advocate collaboration with interventional radiologists in situations of uncertainty.

\textit{Limitations}

This study is too small for multivariate analysis. Furthermore, the spinal cord angiography was performed only for the aortic area planned to be covered by the stentgraft. Thus, ARMAs situated outside of this area were not described. As is generally known with retrospective and uncontrolled studies, they tend to overestimate effect sizes13.

\textit{Conclusions}

MISACE of SA feeding directly the great ARMA and ASA in patients with TAA and TAAA to prevent SCI after endovascular repair is technically feasible and very encouraging in terms of safety. MISACE of SA-ARMA followed by endovascular aneurysm exclusion may substantially reduce postoperative ischemic spinal cord injury.
References

Table 1: Selection of patients for staged endovascular repair of thoracoabdominal aortic aneurysm with minimally invasive segmental artery coil embolization

<table>
<thead>
<tr>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>• TAAA, Crawford types I, II or III</td>
<td>• symptomatic and ruptured TAAA</td>
</tr>
<tr>
<td>• TAAA, Crawford types IV when after the endovascular repair the aortic segment covered by the stentgraft will reach the 6th rib</td>
<td>• pre-operative neurological deficits or spinal cord dysfunction</td>
</tr>
<tr>
<td></td>
<td>• urgent treatment due to a planned operation of a malignancy</td>
</tr>
<tr>
<td></td>
<td>• high risk for segmental artery embolism such as ‘shaggy’ aorta</td>
</tr>
<tr>
<td></td>
<td>• Patients with no SAs and with very small SAs (<2mm) on the CTA at the aortic segment to be covered by the stentgraft</td>
</tr>
<tr>
<td></td>
<td>• Patients with chronic renal insufficiency (GFR <30 ml/min/1.73 m²)</td>
</tr>
</tbody>
</table>

TAAA indicates thoracoabdominal aortic aneurysm; CTA, computed tomography angiography; GFR, glomerular filtration rate; SA, segmental artery.
Table 2. Demographics, clinical and anatomical characteristics of 54 patients with thoracoabdominal aortic aneurysms

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>54</td>
<td>%</td>
</tr>
<tr>
<td>Male</td>
<td>36</td>
<td>66.7</td>
</tr>
<tr>
<td>Age (years)</td>
<td>71.1 ± 9.3</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>50</td>
<td>92.6</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>14</td>
<td>25.9</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>22</td>
<td>40.7</td>
</tr>
<tr>
<td>Smoker</td>
<td>23</td>
<td>42.6</td>
</tr>
<tr>
<td>COPD</td>
<td>9</td>
<td>16.7</td>
</tr>
<tr>
<td>Peripheral arterial disease</td>
<td>8</td>
<td>14.8</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>52</td>
<td>96.3</td>
</tr>
<tr>
<td>Renal Insufficiency (GFR<60ml/min/1.73m²)</td>
<td>10</td>
<td>18.5</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>27.7 ± 5</td>
<td></td>
</tr>
<tr>
<td>ASA classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASA III</td>
<td>40</td>
<td>74.1</td>
</tr>
<tr>
<td>ASA IV</td>
<td>14</td>
<td>25.9</td>
</tr>
<tr>
<td>Aortic diameter (mm)</td>
<td>61.6 ± 10.4</td>
<td></td>
</tr>
<tr>
<td>Thoraco-abdominal aortic aneurysms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type I</td>
<td>8</td>
<td>14.8</td>
</tr>
<tr>
<td>Type II</td>
<td>24</td>
<td>44.4</td>
</tr>
<tr>
<td>Type III</td>
<td>11</td>
<td>20.4</td>
</tr>
<tr>
<td>Type IV</td>
<td>11</td>
<td>20.4</td>
</tr>
<tr>
<td>Pathology</td>
<td>Aneurysm</td>
<td>PAU</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etiology</td>
<td>Degenerative</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Post-dissection</td>
<td>13</td>
</tr>
<tr>
<td>Previous Aortic Procedure</td>
<td>Ascending aortic repair</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Elephant Trunk Procedure</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Frozen Elephant Trunk Procedure</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TEVAR</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EVAR</td>
<td>6</td>
</tr>
</tbody>
</table>

| Time from aortic procedure (years) | 4.4 ± 5.1 |

Continuous data are presented as mean ± standard deviation; categorical data are given as counts (percentage). COPD indicates chronic obstructive pulmonary disease; GFR, glomerular filtration rate; ASA, American Society of Anesthesiologists; PAU, penetrating aortic ulcer; T(EVAR), thoracic (endovascular aortic repair)
Figure Legends

Central Picture: Segmental Artery (SA) feeding the anterior spinal artery via the collateral network

Figure 1: Patient Flow Diagram

Patients presented with thoracoabdominal aortic aneurysm and treated with endovascular repair between January 2018 and July 2020 are shown. TAAA = thoracoabdominal aortic aneurysms, MISACE = minimally invasive segmental artery coil embolization, ER = endovascular repair, ARMA-ASA = anterior radiculomedullary artery - anterior spinal artery

Figure 2: Staged endovascular repair of thoracoabdominal aortic aneurysm with endovascular occlusion of segmental arteries feeding the anterior spinal artery

A) Lateral view of the 3D reconstruction of a thoracoabdominal aortic aneurysm.

B) Selective transfemoral catheterization and opacification of the SAs originating in the thoracoabdominal area and suppling the anterior spinal artery via the branch typical of the great anterior radiculomedullary artery.

C) Occlusive coils in the origin of segmental arteries originating from the thoracoabdominal aorta after minimally invasive segmental artery coil embolization.

D) Completion angiography after endovascular repair of a thoracoabdominal aortic aneurysm.
E) Lateral view of the 3D reconstruction of a thoracoabdominal aortic aneurysm after endovascular repair.

Figure 3: Arteriogram showing visualization of the great anterior radiculomedullary artery (ARMA) and the anterior spinal artery (ASA):

A) Directly through segmental artery (SA);

B) Indirectly through adjacent SA;

C) Indirectly through contralateral SA. The arrow shows the ASA, the asterisk the ARMA, the transparent arrowhead the SA, the black arrowhead the anastomotic circulation.

Figure 4: The origin of the great anterior radiculomedullary artery from the segmental artery

Diagram showing the origin of anterior radiculomedullary artery (ARMA) between Th8 and L3 levels. ARMA arose on the left side in 75.3% of the vessels.

Video Legends

Video: In this digital subtraction angiography, which was performed in an anterio-posterior projection in the thoracoabdominal region, the opacification of the large anterior radiculomedullary artery (ARMA) (typical hairpin shape) and the anterior vertebral artery can be seen after injection of contrast medium via an angiography catheter placed in the ostium of the left
segmental artery (SA) at the level of the vertebral body Th12. The SA at the level of Th12 feeds into the ARMA via the rich collateral network of the spinal cord that developed after endovascular occlusion of the SAs at the level of Th 12 on both sides, Th 12 left side and Th 10 right side.
Endovascular occlusion of segmental arteries feeding the anterior spinal artery to stage endovascular thoracoabdominal aortic repair

Minimally invasive coil embolization of segmental arteries (MISACE) feeding the anterior radiculomedullary artery (ARMA) and anterior spinal artery (ASA) can be safely performed and may drastically reduce the rate of spinal cord ischemia (SCI) after the endovascular repair (EVAR) of thoracoabdominal aortic aneurysms (TAAA).