Percutaneous Decannulation Reduces Procedure Length and Rates of Groin Wound Infection in Patients on Venoarterial Extracorporeal Membrane Oxygenation

Sophia H. Roberts, MD, Erin M. Schumer, MD, Mary Sullivan, AGACNP-BC, John Grotberg, MD, Bianca Jenkins, BSN, Irene Fischer, MPH, Marci Damiano, BSN, Matthew R. Schill, MD, Muhammad F. Masood, MD, Kunal Kotkar, MD, Amit Pawale, MD

PII: S2666-2736(24)00013-5
DOI: https://doi.org/10.1016/j.xjon.2024.01.012
Reference: XJON 1002

To appear in: JTCVS Open

Received Date: 19 September 2023
Revised Date: 19 December 2023
Accepted Date: 3 January 2024

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2024 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Percutaneous Decannulation Reduces Procedure Length and Rates of Groin Wound Infection in Patients on Venoarterial Extracorporeal Membrane Oxygenation

Sophia H. Roberts, MD¹; Erin M. Schumer, MD¹; Mary Sullivan, AGACNP-BC¹; John Grotberg, MD²; Bianca Jenkins, BSN¹; Irene Fischer, MPH¹; Marci Damiano, BSN¹; Matthew R. Schill, MD¹; Muhammad F. Masood, MD¹; Kunal Kotkar, MD¹; Amit Pawale, MD¹

1. Department of Surgery, Division of Cardiac Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO

2. Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO.

This study was presented at the AATS Mechanical Support and Thoracic Transplantation Summit poster competition on June 9th, 2023 in Toronto, ON, Canada.

Disclosures: The authors have no relevant disclosures to report.

Funding: This study was not supported by external funding.

Corresponding author:

Amit Pawale, MD
Associate Professor of Cardiothoracic Surgery
(646)-556-5229
amitp@wustl.edu

Article Word Count: 1965
IRB #202303137. Approved on March 27th, 2023

GLOSSARY OF ABBREVIATIONS:
1. Venoarterial extracorporeal membrane oxygenation (VA-ECMO)
2. Extracorporeal membrane oxygenation (ECMO)
3. Common femoral artery (CFA)
4. Distal perfusion catheter (DPC)
5. Computed tomography angiography (CTA)
6. Superficial femoral artery (SFA)
7. Instructions for use (IFU)

CENTRAL PICTURE (70/90 char):
Procedural steps for percutaneous decannulation from femoral VA-ECMO.

CENTRAL MESSAGE (146/200 char): Percutaneous decannulation from femoral VA-ECMO with a suture-mediated closure device reduces procedure length and rates of groin wound infection.

PERSPECTIVE STATEMENT (367/405 char): Open surgical cutdown and femoral artery repair during decannulation from VA-ECMO carries significant morbidity, with a 7-25% rate of groin wound infection. Percutaneous closure offers an attractive alternative to open cutdown. These results support the use of percutaneous decannulation to reduce groin wound infections in patients decannulated from femoral VA-ECMO.
STRUCTURED ABSTRACT (246/250 words):

Objective: Open decannulation from femoral venoarterial extracorporeal membrane oxygenation (VA-ECMO) carries high risk of morbidity, including groin wound infection. This study evaluated the impact of percutaneous decannulation on rates of groin wound infection in patients decannulated from femoral VA-ECMO.

Methods: Between January 1, 2022 and April 30, 2023, 47 consecutive patients received percutaneous femoral VA-ECMO and survived to decannulation. A percutaneous suture-mediated closure device was used for decannulation in patients with relatively smaller arterial cannulas. Patients with larger arterial cannulas or unsuccessful percutaneous closures underwent surgical cutdown and repair of the femoral artery. The primary outcome was arterial site wound infection following decannulation.

Results: Among the 47 patients who survived to decannulation from VA-ECMO, 21 underwent percutaneous decannulation and 27 underwent surgical cutdown. One patient underwent two VA-ECMO runs, one with percutaneous decannulation and one with surgical cutdown. Percutaneous decannulation was attempted in 22 patients with 21/22 (95.5%) success rate. Decannulation procedure length was significantly shorter in the percutaneous group (79 minutes vs. 148 minutes, \(P=0.0001 \)). The percutaneous group had significantly reduced rates of groin wound complications (0% vs. 40.7%, \(P=0.001 \)) and groin wound infections (0% vs. 22.2%, \(P=0.03 \)) when compared to the surgical cutdown group. 3 patients (14.3%) in the percutaneous group experienced vascular complications, including pseudoaneurysm at the distal perfusion catheter site and nonocclusive thrombus of the common femoral artery.” (Lines 68-70).

Conclusions: Percutaneous decannulation may reduce decannulation procedure length and rate of groin wound infection in patients who survive to decannulation from VA-ECMO.
INTRODUCTION

In adult patients, percutaneous femoral venoarterial extracorporeal membrane oxygenation (VA-ECMO) cannulation involves placement of a 15Fr to 21Fr cannula in the common femoral artery (CFA). Due to the relatively large size of the arterial sheath, decannulation from VA-ECMO has traditionally required open surgical cutdown of the groin with exposure and repair of the CFA to prevent CFA pseudoaneurysm and persistent bleeding.\(^{(1)}\)

Surgical cutdown of the groin for decannulation is associated with significant morbidity, as well as vascular and wound complications.\(^{(2, 3)}\) Rates of groin wound infection after open decannulation from femoral VA-ECMO range between 7% and 25%, and are associated with longer hospital lengths of stay.\(^{(3-5)}\)

The rate of post-decannulation wound infection may be reduced by a percutaneous approach to CFA repair. The Perclose ProGlide (Abbott Vascular Inc., Redwood, CA) is a suture-based percutaneous closure device that deploys suture on either side of the arterial wall, mimicking surgical closure for access sites created by large bore catheters.\(^{(6)}\) While several reports have shown non-significant reduction in groin wound infection with percutaneous decannulation, these studies examined wound infection during the index hospital stay, within 30 days of cannulation, or within an undefined study period.\(^{(7-9)}\) In order to further characterize the incidence of and factors contributing to post-decannulation wound infection, there is a need for
further studies examining wound infection as the primary endpoint after percutaneous and open surgical decannulation from VA-ECMO. In this study, we examined the rates of groin wound infection following VA-ECMO decannulation by percutaneous CFA repair and open surgical cutdown.

METHODS

Study Population

This study (IRB #202303137, March 27th, 2023) was approved by the Washington University School of Medicine Institutional Review Board. The approval included a waiver of informed consent. Patient data including preoperative characteristics, operative details, postoperative course, and longitudinal follow-up were obtained from our institutional Extracorporeal Life Support Organization (ELSO) database as well as manual review of the electronic medical records. From January 1, 2022 to April 30, 2023, 87 patients underwent VA-ECMO at our institution (Figure 1). Of these 87 patients the following patients were excluded: 28 patients expired on ECMO and were not decannulated, and 11 underwent central or non-femoral peripheral cannulation. The remaining 47 patients survived to decannulation from femoral VA-ECMO and were included in this study.

VA-ECMO Decannulation

Patients were divided into percutaneous closure and open cutdown groups based on the method of femoral arterial decannulation. Unless the patient was already receiving broad spectrum antibiotics, patients received antibiotic prophylaxis with 2g IV cefazolin or 1g IV vancomycin prior to decannulation. The percutaneous technique was first performed by one
attending surgeon at our institution, and then adopted by three other surgeons during the study period. A Perclose ProGlide device (Abbott Vascular Inc., Redwood, CA), was used for decannulation in accordance with surgeon preference, the presence of relatively smaller arterial cannulas (15Fr-17Fr), and the absence of an existing vascular complication. Fluoroscopy was not used to visualize cannula placement during percutaneous decannulation because all cannulations at our institution are performed under ultrasound guidance to ensure cannulation of the CFA. All patients cannulated at outside hospitals and then transferred were decannulated by surgical cutdown only.

Percutaneous decannulation The arterial cannula was accessed and an 0.035-inch guidewire wire was advanced to the descending aorta under transesophageal echocardiogram (Figure 2 a,b). The arterial cannula was removed over the wire (Figure 2 c,d) and two percutaneous suture-mediated closure devices were applied at the 10 and 2 o'clock positions (Figure 2 e,f). It is routine at our institution to place a distal perfusion catheter (DPC) ipsilateral to the arterial cannula. If adequate hemostasis was achieved with a pedal pulse per Doppler, the procedure was completed by removing the DPC, holding manual pressure on the DPC site, and reversing heparin with protamine. In the event of significant bleeding or loss of pedal pulse, the decannulation approach was converted to surgical cutdown.

Open surgical cutdown consistent of a vertical incision over the femoral vessels. The CFA was dissected out and proximally and distally controlled with vessel loops. The CFA was then clamped proximally and distally as the arterial cannula was removed. The artery was debrided until healthy tissue was visualized. The clamps were briefly released to flush the artery, followed by repair with simple interrupted 5-0 Prolene sutures. The DPC was removed from the superficial femoral artery (SFA), and the artery was also repaired primarily with simple
interrupted 5-0 Prolene sutures. Open groin wounds were closed in three layers. However, there was variability in closure of the final layer, as some surgeons used interrupted nylon sutures while others used staples.

Application of negative pressure wound therapy (NPWT) at the time of decannulation is not routine for our program. Of the 27 patients in the surgical cutdown group, 5 had an incisional NPWT placed at the time of decannulation. 1 patient underwent decannulation at the time of heart transplant. The remaining 4 patients underwent concomitant vascular repair by Vascular Surgery at the time of decannulation due to lower limb ischemia requiring thrombectomy, patch angioplasty, and/or fasciotomies. Repeat imaging of the arterial cannula or DPC sites was not routinely performed prior to or following decannulation unless a clinical issue arose, including groin swelling or diminished distal pulses.

Study Endpoints

The primary outcome was arterial site wound infection at any point following decannulation, as defined by reopening of the groin incision, surgical debridement, or initiation of antibiotics for wound infection. Secondary outcomes included length of decannulation procedure time, hospital length of stay, and inpatient survival. Length of decannulation procedure time was calculated as the time between procedure start and end times recorded in the electronic medical record. Patients who underwent decannulation with concomitant procedures were excluded from this secondary procedure time analysis. Concomitant procedures included percutaneous ventricular assist device placement, reconfiguration to central ECMO, left ventricular assist device placement, heart transplant, ascending aortic repair, or mitral valve replacement, and coronary artery bypass grafting. These patients were excluded from the
procedure time analysis, as the exact timing of decannulation could not be determined from the
procedure record. Median length of follow-up was 184 days (range 18-483 days).

Statistical Analysis

All statistical analysis was performed using Stata software version 17 (StataCorp, College
Station, TX). Characteristics of groups are presented as counts with percentages and compared
using Fisher exact test. Continuous variables are expressed as median (minimum, maximum) and
compared using Mann-Whitney test. Significance was defined as $P < 0.05$.

RESULTS

Study Population and Baseline Characteristics

Among the 47 patients who survived to decannulation from femoral VA-ECMO, 21
patients underwent percutaneous decannulation and 27 patients underwent surgical cutdown.
One patient underwent left femoral cannulation and open decannulation, followed by a second
VA-ECMO run with right femoral cannulation and percutaneous decannulation. Patients in both
groups were primarily male and in their 50’s, with no significant differences in baseline
demographics between groups (Table 1). Indications for VA-ECMO included, acute myocardial
infarction, postcardiotomy cardiogenic shock, cardiac arrest, and refractory cardiogenic shock
(Table 1).

Periprocedural Characteristics

Percutaneous decannulation was attempted in 22 patients with 21/22 (95%) success rate.
During the one failed percutaneous decannulation, inadequate hemostasis was obtained after
deployment of two percutaneous suture-mediated devices. Decannulation was converted to an open approach, and a left groin cutdown was immediately performed with primary repair of the left external iliac artery. There was no significant difference in median arterial cannula size between groups ($P=0.25$). Of the 21 patients in the percutaneous group, 19 had a 17Fr arterial cannula, 1 had a 15Fr arterial cannula, and 1 had a 19Fr arterial cannula. 91% of the entire cohort had a distal perfusion catheter (DPC) placed during VA-ECMO support, with no significant differences between groups ($P=0.99$). Arterial cannulas were in place up to 14 days in the percutaneous group and up to 19 days in the surgical cutdown group (Table 2). Excluding patients who underwent concomitant aortic or valve surgery, ventricular assist device placement, or heart transplant, decannulation procedure length was significantly shorter in the percutaneous group (79 minutes vs 148 minutes, $P=0.0001$) (Table 2).

Postoperative Outcomes and Complications

There was a significant reduction in the rate of groin wound complications in the percutaneous group compared to the surgical cutdown group (0% vs 40.7%, $P=0.001$). Among the surgical cutdown group, six patients developed wound infections, three had wound dehiscence, and one had seroma requiring drainage. One patient in the surgical cutdown group required return to the operating room for a drain complication without signs of infection. One patient underwent left femoral cannulation and open decannulation, followed by a second VA-ECMO run with right femoral cannulation and percutaneous decannulation. This patient subsequently developed a wound infection at the surgical cutdown site but not the percutaneous decannulation site.
Three patients (14.3%) in the percutaneous group experienced vascular complications. These three patients were decannulated after 2 to 7 days. Two patients developed a pseudoaneurysm at the DPC site. Both patients were evaluated by interventional radiology and one required thrombin injection. The third patient developed distal pulse discrepancies following percutaneous decannulation. Three days following decannulation, computed tomography angiography (CTA) revealed a nonocclusive thrombus in the proximal left common femoral artery near the percutaneous suture-mediated closure device. A left groin cutdown was performed with left iliofemoral endarterectomy and patch angioplasty. There was no significant difference in inpatient mortality (11.8% vs 33.3%, p=0.16) or hospital length of stay (35 days vs 41 days, P=0.49) between percutaneous and surgical cutdown groups. The overall mortality rate was significantly reduced in the percutaneous group compared to the surgical cutdown group (9.5% vs. 37.0%, P=0.03).

DISCUSSION

This study examined the procedural outcomes of a percutaneous decannulation technique utilizing a suture-mediated percutaneous closure device. In our cohort of 47 consecutive patients decannulated from femoral VA-ECMO, we observed a significant decrease in groin wound infections in patients who underwent percutaneous decannulation compared to those who underwent surgical cutdown. The percutaneous approach also substantially decreased operative times when compared to surgical cutdown. See Figure 3 for a graphical abstract of the study.

Surgical cutdown of the femoral vessels is associated with high risk for wound complications, including infection, seroma, and lymphatic leakage. By eliminating the groin cutdown and lymphatic disruption, percutaneous decannulation from femoral VA-ECMO may
reduce these morbid complications. Percutaneous decannulation can be performed using suture-mediated closure devices, such as the ProGlide, or plug-based arterial closure devices, such as the Angio-Seal (Terumo, Somerset, NJ) and MANTA (Teleflex, Morrisville, NC). The Perclose ProGlide device can be deployed at the time of arterial cannulation in a “pre-closure” technique, which has been widely utilized during endovascular aortic repair and transcatheater aortic valve implantation.\(^{11, 12}\) The Instructions for Use (IFU) of the Perclose ProGlide states that at least two devices and the pre-closure technique must be used for arterial and venous sheath sizes greater than 8Fr.\(^{13}\) Pre-closure of the CFA has been shown to significantly decrease the rate of groin wound infections in patients on VA-ECMO, including immunosuppressed patients supported on VA-ECMO during lung transplantation.\(^{14, 15}\) However, VA-ECMO is often initiated in an emergent fashion, where the time, materials, and team expertise needed for pre-closure may not be available. To address this issue, there have been several other reports of total percutaneous “post-closure” for CFA repair with deployment of the ProGlide device at the time of decannulation.\(^{7, 16-18}\)

Previous studies have demonstrated that preclosure percutaneous decannulation technique using the Perclose ProGlide reduces rates of groin wound infection.\(^{9, 14, 15}\) Our study demonstrates that post-closure percutaneous decannulation using the Perclose ProGlide significantly lowers the risk of groin wound infection after VA-ECMO. Multiple case reports and small case series similarly report a 0% rate of groin wound infection utilizing this post-closure technique.\(^{17, 18}\) Hwang et al. did not report a significant reduction in groin wound infections with percutaneous decannulation. However, the groin wound infection rates observed were exceptionally low in both the percutaneous and surgical cutdown groups (0% vs. 3.4%, \(P=0.50\)).\(^{7}\) Of note, their study population also had a mean BMI of 23, whereas the median BMI
of our percutaneous and surgical cutdown groups were 30.0 and 28.7, respectively. Majunke et al. reported 13% wound infection following percutaneous decannulation from VA-ECMO using the Perclose ProGlide, however the authors note that decannulation was performed at the patient’s bedside in some instances. We perform all our percutaneous decannulations in the operating room to both optimize sterility and allow for immediate conversion to surgical cutdown if issues with hemostasis or limb ischemia are encountered.

Notably in our series, no patients in the percutaneous group developed groin wound complications. However, we observed a 14.3% rate of vascular complications among the percutaneous decannulation group. The three patients in the percutaneous group who developed vascular complications were decannulated after 2 to 7 days. Only 3 patients in the percutaneous group were decannulated after 7 days, however none of these patients developed wound or vascular complications. Our institution does not routinely perform post-decannulation imaging unless a clinical issue arises, such as diminished distal pulses, hematoma, etc. The two pseudoaneurysms in our series were discovered in the post-decannulation period due to groin swelling and subsequent CTA. Vascular complications at the DPC site following percutaneous decannulation from VA-ECMO have been reported in other studies. In a series of 10 patients who underwent percutaneous decannulation with the MANTA device (Teleflex, Morrisville, NC), Shah et al. describe their method for routine repair of the DPC site at the time of removal with an AngioSeal VIP (Terumo Interventional Systems, Somerset, NJ) or MYNX (Cardinal Health, Dublin, OH) vascular closure device. However, two of these patients subsequently developed a pseudoaneurysm at the superficial femoral artery (SFA) DPC site, one of which required thrombin injection while the other was observed. One patient did not undergo SFA repair with a closure device due to the presence of diffuse arterial disease and the second
experienced a failure of the MYNX device. These pseudoaneurysms were both identified on post-decannulation imaging, but the authors do not describe if the patients were also symptomatic. It remains unclear if there is a benefit to additional percutaneous repair of the DPC site at the time of decannulation, or if there would be more complications due to the relatively smaller size of superficial femoral artery. Additionally, the IFU for the Perclose ProGlide states that device should not be used for puncture sites in the superficial femoral artery due to risk of pseudoaneurysm, intimal dissection, or acute vessel thrombosis.

This study has several limitations. First, this is a single-center retrospective study with relatively small numbers in both percutaneous and open decannulation groups. Another major limitation of this study is that decannulation technique was influenced by the inherent selection bias of the operating surgeon. The post-closure percutaneous decannulation technique was introduced to our institution by one surgeon, and later adopted by three additional surgeons. Short-term survival (data not shown) was observed to be better in patients undergoing percutaneous decannulation, suggesting that some degree of selection bias was present at the time of decannulation. It is unclear how the possible selection bias of each surgeon may have changed during the study period, making it impossible to account for the confounding variables between these two relatively small groups. The length of follow-up was also relatively short given that the percutaneously decannulation technique was only recently adopted at our institution. Only one patient in the percutaneous group had a 19Fr arterial cannula, so we can not make definitive conclusions regarding larger cannula sizes. Furthermore, only patients who underwent femoral arterial cannulation were included in this study. Therefore our findings regarding arterial cannula site wound infection can not be generalized to patients who underwent central or axillary cannulation. Lastly, while our study demonstrates the safety of percutaneous
post-closure decannulation, the superiority of this technique over open decannulation can only be proven with a larger, randomized study.

CONCLUSIONS

Percutaneous decannulation is safe and may reduce both decannulation procedure length and the rate of groin wound infections in patients who survive to decannulation from percutaneous femoral VA-ECMO. These results support the use of percutaneous suture-mediated closure devices in these patients, when the femoral arterial cannula size is not larger than 17Fr and there is no existing vascular complication.
DISCLOSURES

The authors have no conflicts of interest to declare. This study was not supported by grants from any specific funding sources.
REFERENCES

Table 1: Baseline Demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Percutaneous Closure (n=21)</th>
<th>Open Cutdown (n=27)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>52 (24-72)</td>
<td>53 (17-83)</td>
<td>0.62</td>
</tr>
<tr>
<td>Female sex (n, %)</td>
<td>3 (14.3%)</td>
<td>9 (33.3%)</td>
<td>0.19</td>
</tr>
<tr>
<td>Body mass index (BMI) (kg/m²)</td>
<td>30.0 (20.3-47.3)</td>
<td>28.7 (20.0-42.8)</td>
<td>0.39</td>
</tr>
<tr>
<td>Hypertension (n, %)</td>
<td>16 (76.2%)</td>
<td>16 (59.3%)</td>
<td>0.36</td>
</tr>
<tr>
<td>Hyperlipidemia (n, %)</td>
<td>17 (81.0%)</td>
<td>18 (66.7%)</td>
<td>0.34</td>
</tr>
<tr>
<td>Type 2 Diabetes (n, %)</td>
<td>7 (33.3%)</td>
<td>5 (18.5%)</td>
<td>0.32</td>
</tr>
<tr>
<td>Peripheral artery disease (n, %)</td>
<td>1 (4.8%)</td>
<td>4 (14.8%)</td>
<td>0.37</td>
</tr>
<tr>
<td>Cerebrovascular accident (n, %)</td>
<td>2 (9.5%)</td>
<td>0 (0%)</td>
<td>0.19</td>
</tr>
<tr>
<td>Chronic kidney disease (n, %)</td>
<td>6 (28.6%)</td>
<td>3 (11.1%)</td>
<td>0.15</td>
</tr>
<tr>
<td>Congestive heart failure (n, %)</td>
<td>4 (19.1%)</td>
<td>7 (25.9%)</td>
<td>0.73</td>
</tr>
<tr>
<td>End stage liver disease (n, %)</td>
<td>0 (0%)</td>
<td>1 (3.7%)</td>
<td>0.99</td>
</tr>
<tr>
<td>Current smoker (n, %)</td>
<td>4 (19.1%)</td>
<td>6 (27.2%)</td>
<td>0.99</td>
</tr>
<tr>
<td>Immunocompromised (n, %)</td>
<td>1 (4.8%)</td>
<td>5 (18.5%)</td>
<td>0.21</td>
</tr>
<tr>
<td>Indication for VA-ECMO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Myocardial Infarction</td>
<td>5 (23.8%)</td>
<td>5 (18.5%)</td>
<td>0.73</td>
</tr>
<tr>
<td>Postcardiotomy</td>
<td>4 (19.1%)</td>
<td>6 (22.2%)</td>
<td>0.99</td>
</tr>
<tr>
<td>Cardiac Arrest</td>
<td>4 (19.1%)</td>
<td>10 (37.0%)</td>
<td>0.21</td>
</tr>
<tr>
<td>Refractory Cardiogenic Shock</td>
<td>8 (38.1%)</td>
<td>6 (22.2%)</td>
<td>0.34</td>
</tr>
</tbody>
</table>
Table 2: Periprocedural VA-ECMO Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Percutaneous (n=21)</th>
<th>Surgical Cutdown (n=27)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial Cannula size (Fr)</td>
<td>17 (15-19)</td>
<td>17 (15-21)</td>
<td>0.25</td>
</tr>
<tr>
<td>Venous Cannula size (Fr)</td>
<td>25 (25-26)</td>
<td>25 (21-25)</td>
<td>0.09</td>
</tr>
<tr>
<td>Ipsilateral arterial and venous catheters (n, %)</td>
<td>17 (81.0%)</td>
<td>20 (74.1%)</td>
<td>0.73</td>
</tr>
<tr>
<td>Distal Perfusion Catheter (n, %)</td>
<td>19 (90.5%)</td>
<td>24 (88.9%)</td>
<td>0.99</td>
</tr>
<tr>
<td>Additional MCS (n, %)</td>
<td>13 (61.9%)</td>
<td>15 (55.6%)</td>
<td>0.77</td>
</tr>
<tr>
<td>CRRT during ECMO (n, %)</td>
<td>12 (57.1%)</td>
<td>18 (66.7%)</td>
<td>0.56</td>
</tr>
<tr>
<td>Days to Decannulation (days)</td>
<td>5 (2-14)</td>
<td>6 (1-19)</td>
<td>0.052</td>
</tr>
<tr>
<td>Decannulation Procedure Length (minutes)</td>
<td>79 (24-170)</td>
<td>148 (49-248)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Negative pressure wound therapy (n, %)</td>
<td>0 (0%)</td>
<td>6 (22.2%)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Postoperative Outcomes and Complications of VA-ECMO

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Percutaneous (n=21)</th>
<th>Surgical Cutdown (n=27)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inpatient Mortality</td>
<td>2 (11.8%)</td>
<td>9 (33.3%)</td>
<td>0.16</td>
</tr>
<tr>
<td>Hospital Length of Stay (days)</td>
<td>35 (6-87)</td>
<td>41 (12-144)</td>
<td>0.49</td>
</tr>
<tr>
<td>Groin Wound Complications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wound Infection</td>
<td>0 (0%)</td>
<td>6 (22.2%)</td>
<td>0.03</td>
</tr>
<tr>
<td>Complete dehiscence</td>
<td>0 (0%)</td>
<td>3 (11.5%)</td>
<td>0.24</td>
</tr>
<tr>
<td>Seroma</td>
<td>0 (0%)</td>
<td>1 (3.9%)</td>
<td>0.99</td>
</tr>
<tr>
<td>Drain Complication</td>
<td>0 (0%)</td>
<td>1 (3.9%)</td>
<td>0.99</td>
</tr>
<tr>
<td>Vascular Complications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFA Pseudoaneurysm</td>
<td>2 (9.5%)</td>
<td>0 (0%)</td>
<td>0.10</td>
</tr>
<tr>
<td>Nonocclusive Thrombus</td>
<td>1 (4.8%)</td>
<td>0 (0%)</td>
<td>0.19</td>
</tr>
</tbody>
</table>
FIGURE LEGENDS

Figure 1: Study flow diagram: patient cohort selection and relevant inclusion and exclusion criteria.

Figure 2: Technical steps for percutaneous decannulation of femoral arterial cannula using the ProGlide device (Abbott Vascular Inc., Redwood, CA). Figure created with Biorender.com. (a) The arterial limb of VA ECMO is divided between clamps; (b) An 18 gauge needle is inserted into the arterial cannula, A 035 J wire is inserted through the needle in descending aorta; (c) The arterial cannula is removed, keeping the wire in place; (d) Wire in situ; (e) The first Proglide device is inserted the wire is removed before deployment of sutures; (f) The wire is re-inserted after the first Proglide sutures are deployed, and the used Proglide device is removed.

Figure 3: Graphical Abstract
Percutaneous Decannulation Reduces Procedure Length and Rates of Groin Wound Infection in Patients on Venoarterial Extracorporeal Membrane Oxygenation

Retrospective review of 47 consecutive patients who survived to decannulation from femoral VA-ECMO between January 1, 2022 – April 30, 2023.

87 VA-ECMO Runs Jan 2022 – April 2023

Excluded:
- 20 Expired on VA-ECMO
- 9 Central cannulation
- 2 Anterior cannulation

47 Patients + 48 VA-ECMO Runs

Percutaneous Closure n=21

Surgical Cutdown n=27

Percutaneous Closure
21 Patients

Surgical Cutdown
27 Patients

Reduced Procedure length
79 vs. 148 minutes (P=0.0001)

Reduced Rate of Groin Wound Complications
0% vs. 40.7% (P=0.001)

Reduced Rate of Groin Wound Infections
0% vs. 22.2% (P=0.03)

These results support the use of percutaneous suture-mediated closure devices in patients on femoral VA-ECMO, when the femoral arterial cannula size is not larger than 17Fr and there is no existing vascular complication.
87 VA-ECMO Runs
Jan 2022 – April 2023

47 Patients + 48 VA-ECMO Runs

Exclude:
• 28 Expired on VA-ECMO
• 9 Central cannulation
• 2 Axillary artery cannulation

Percutaneous Closure n=21
Surgical Cutdown n=27
Percutaneous Decannulation Reduces Procedure Length and Rates of Groin Wound Infection in Patients on Venoarterial Extracorporeal Membrane Oxygenation

Retrospective review of 47 consecutive patients who survived to decannulation from femoral VA-ECMO between January 1, 2022 – April 30, 2023.

These results support the use of percutaneous suture-mediated closure devices in patients on femoral VA-ECMO, when the femoral arterial cannula size is not larger than 17Fr and there is no existing vascular complication.