Simulation-based Assessment of Robotic Cardiac Surgery Skills: An international multicenter, cross-specialty trial

Gennady V. Atroshchenko, MD, Emiliano Navarra, MD, Matthew Valdis, MD, MSc, FRCS, Elena Sandoval, MD, Nasseh Hashemi, MD, Stepan Cerny, MD, Daniel Pereda, MD, PhD, Meindert Palmen, MD, PhD, Flemming Bjerrum, MD, PhD, Niels Henrik Bruun, MSc, Martin G. Tolsgaard, MD, DMSc, PhD

PII: S2666-2736(23)00347-9
DOI: https://doi.org/10.1016/j.xjon.2023.10.029
Reference: XJON 947

To appear in: JTCVS Open

Received Date: 30 July 2023
Revised Date: 2 October 2023
Accepted Date: 10 October 2023

Please cite this article as: Atroshchenko GV, Navarra E, Valdis M, Sandoval E, Hashemi N, Cerny S, Pereda D, Palmen M, Bjerrum F, Bruun NH, Tolsgaard MG, Simulation-based Assessment of Robotic Cardiac Surgery Skills: An international multicenter, cross-specialty trial, JTCVS Open (2023), doi: https://doi.org/10.1016/j.xjon.2023.10.029.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2023 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Can Time-based score (TBS) and modified Global Evaluative Assessment of Robotic Skills (mGEARS) score be used for assessment of robotic cardiac surgery skills in wet lab?

<table>
<thead>
<tr>
<th>Participants</th>
<th>3 wet lab tasks</th>
<th>Results</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 experienced robotic cardiac surgeons</td>
<td></td>
<td></td>
<td>The use of TBS and mGEARS provides reliable assessment of certain robotic-assisted cardiac surgery skills in wet lab. A credible pass-fail standard for credentialing of a robotic cardiac console surgeon in preclinical settings is established. We strongly recommend the incorporation of the standardized wet lab protocols used in this study into all robotic cardiac surgical training programs to allow for improved efficiency of skill acquisition and to ensure better and safer surgical performances.</td>
</tr>
<tr>
<td>15 surgeons without robotic experience</td>
<td>Left atrial closure</td>
<td>TBS and mGEARS score could reliably discriminate between different levels of competence for atrial closure and mitral stitches tasks.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal thoracic artery (ITA) dissection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitral stitches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rater 1</td>
<td>All the tasks assessed using:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- mGEARS score by two raters blinded to the identity and experience level of the participants and to each other’s rating</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- TBS rated on site by principal investigator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rater 2</td>
<td>Pass/fail cut-off level (vertical dashed line) to determine proficiency. Combining both scores enhances evaluation of proficiency.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simulation-based Assessment of Robotic Cardiac Surgery Skills: An international multicenter, cross-specialty trial

Authors: Gennady V. Atroshchenko1,2,6, MD, Emiliano Navarra3, MD, Matthew Valdis4, MD, MSc, FRCS, Elena Sandoval5, MD, Nasseh Hashemi6,7, MD, Stepan Cerny8, MD, Daniel Pereda5,9, MD, PhD, Meindert Palmen10,11, MD, PhD, Flemming Bjerrum12,13, MD, PhD, Niels Henrik Bruun14, MSc, Martin G. Tolsgaard13,15,16 MD, DMS, PhD.

Institution:
1Department of Cardiothoracic Surgery, Aalborg University Hospital, Aalborg, Denmark
2ROCNord Robotic Centre Aalborg, Aalborg University Hospital, Aalborg, Denmark
3Department of Cardiac Surgery, Ospedale Sant’Andrea, “Sapienza” University of Rome, Rome, Italy
4Division of Cardiac Surgery, Department of Surgery, Western University, London Health Sciences Center, London Ontario, Canada
5Department of Cardiovascular Surgery, Hospital Clínic. Barcelona, Spain.
6Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
7Nordsim, Aalborg University Hospital, Aalborg Denmark
8Department of Cardiac Surgery, Na Homolce Hospital, Prague, Czech Republic
9Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
10Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, the Netherlands
11Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
Disclosure statement: nothing to disclose.

Funding: Funding for this study was partially provided by Medtronic. Medtronic had no involvement in planning, designing, or conducting the study. The simulator equipment was funded by ROCNord Robotic Centre Aalborg, Department of Cardiothoracic Surgery, Aalborg University Hospital, and Biomedical Research Laboratory, Aalborg University Hospital, Denmark.

Corresponding author: Gennady V. Atroshchenko, MD, Department of Cardiothoracic Surgery, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark

Phone: +45 97664649

e-mail: gennady.atroshchenko@gmail.com

Clinical trial registry number: NCT05043064

Word Count: 3368
Ethics Review Board Approval: The Regional Scientific Ethical Committee of the North Denmark Region assessed that approval was not required for this study (Reference number 2020-000992-55).

Informed Consent: all participants gave verbal and signed informed consent including agreeing to video recordings.

Glossary of Abbreviations

ITA = internal thoracic artery
TBS = time-based score
mGEARS = Modified Global Evaluative Assessment of Robotic Skills score
ICC = intraclass correlation coefficient
CI = confidence interval

Central picture legend: Robotic-assisted closure of the porcine atrium.

Central message: The use of time-based score and a modified GEARS score provides reliable assessments of certain robotic-assisted cardiac surgery skills with sufficient validity evidence for wet lab settings.

Perspective statement: As robotic-assisted cardiac surgery requires a specific skill set, there is a rising demand for standardized training pathways. The study provides validity evidence for using a time-based score and modified GEARS score in evaluating certain robotic-assisted cardiac surgery skills in wet lab settings. A reliable pass/fail standard for credentialing of a robotic cardiac console surgeon was established.
Structured Abstract (231 words)

Objective: This study aimed to investigate the validity of simulation-based assessment of robotic-assisted cardiac surgery skills using a wet lab model, focusing on the use of a Time-Based Score (TBS) and modified Global Evaluative Assessment of Robotic Skills (mGEARS) score.

Methods: We tested three wet lab tasks (atrial closure, mitral annular stitches, and internal thoracic artery (ITA) dissection) with both experienced robotic cardiac surgeons and novices from multiple European centers. The tasks were assessed using two tools: TBS and mGEARS score. Reliability, internal consistency, and the ability to discriminate between different levels of competence were evaluated.

Results: The results demonstrated a high internal consistency for all three tasks using mGEARS assessment tool. The mGEARS score and TBS could reliably discriminate between different levels of competence for the atrial closure and mitral stitches tasks, but not for the ITA harvesting task. A generalizability study also revealed that it was feasible to assess competency of the atrial closure and mitral stitches tasks using mGEARS, but not the ITA dissection task. Pass/fail scores were established for each task using both TBS and mGEARS assessment tools.

Conclusions: The study provides sufficient evidence for using TBS and modified GEARS scores in evaluating robotic-assisted cardiac surgery skills in wet lab settings for intracardiac tasks. Combining both assessment tools enhances the evaluation of proficiency in robotic cardiac surgery, paving the way for standardized, evidence-based preclinical training and credentialing.

Keywords: robotic cardiac surgery, assessment, validity, wet lab, simulation

Introduction
Robotic-assisted surgery has entered the mainstream of cardiac surgery, with large numbers of cases now performed at specialized centers worldwide1-3. Despite the demonstrated benefits and the growing number of robotic-assisted procedures, the adoption of this technology has been slow, partly due to a lack of structured training programs4,5. As robotic-assisted surgery requires a specific skill set, there is a rising demand for standardized international training pathways to prepare the next generation of robotic surgeons6. Yet, robotic-assisted cardiac surgery skill training is minimal or absent in residency curricula, and there are no credentialing requirements for board certification5,7.

Simulation-based training has been increasingly used to train surgeons in preclinical settings8 and to assess competency9-11. Simulation-based training enables skill development outside of the operating room, allowing for feedback and correction of errors in a controlled and safe environment without any risk to patients12. In the simulated setting, trainees can practice until they reach a standard level of competency before beginning supervised clinical training. However, in order to determine when trainees have achieved this level of competency, assessments with an established validity evidence are necessary13.

The objective of this study was to investigate the validity of simulation-based assessment of robotic-assisted cardiac surgery skills in a wet lab setting.

Materials and methods

This was a prospective study gathering data between 27 September and 2 December 2021 at the Robotic Center ROCnord, Biomedical Research Laboratory, Aalborg University, Denmark. A contemporary framework of validity14 was used to describe the evidence for the assessment of robotic-assisted cardiac surgery skills in a wet lab model. Five sources of validity evidence were
gathered: content evidence, response process, internal structure, relation to other variables, and consequences of testing.

The Regional Scientific Ethical Committee of the North Denmark Region assessed that approval was not required for this study (Reference number 2020-000992-55). The study was registered at ClinicalTrials.gov (NCT05043064). All participants gave verbal and signed informed consent including agreeing to video recordings.

Study context

The study was conducted in an animal wet lab using the da Vinci Xi Surgical System (Intuitive Surgical, California, USA). All procedures were video-recorded and coded for blinded assessment. A time-based score (TBS) and a modified Global Evaluative Assessment of Robotic Skills (mGEARS) score (Table 1) were employed to evaluate participants' performance. In mGEARS, the performances were not rated on the autonomy domain – a part of the full GEARS score – as autonomy could not be evaluated from the recordings. Two experienced robotic cardiac surgeons from Canada and Spain rated all videos using mGEARS independently, while TBS was rated on-site by the principal author. The raters were blinded to the identity and experience level of the participants, and to each other's ratings.

Outcomes

The primary outcome was TBS and the secondary outcome was the mGEARS score for each task.

The time-based score equation (adapted from Valdis et al17) was calculated in seconds as follows:

$$\text{TBS} = \text{Max time} - \text{Completion time} - \text{Errors}.$$

Max time was the maximum total time that a participant spent to complete the task during the first attempt. Completion time was the time used by each study participant to finish the task. Errors were divided into minor and major ones. A
minor error resulted in adding a 10-second penalty time to the TBS equation. A major error led to a score of zero, regardless of time to completion.

Minor errors: moving robotic arms out of view, robotic arm collision, dropping the needle.

Major errors: avulsion of ITA or suturing model, tearing/fraying the suture, gross tissue damage (specifically with the cautery).

Setting up cases

The da Vinci Xi Surgical System with Xi/X 8 mm endoscope plus, 30° was utilized. Prepared porcine anterior chest wall with the intact sternum and attached costae in a reversed “V” shape was used for robotic-assisted harvesting of ITA. The fascia and covering intercostal muscles were removed to expose the ITA and the internal thoracic vein (anatomically there is only one corresponding vein in porcine and both artery and vein are covered a thick layer of intercostal muscles in contrast to human). An isolated porcine heart from 35-60 kg pigs was used for robotic-assisted mitral surgery. An eight cm left atriotomy was made to provide access to the mitral valve. Two sutures at each corner of the atriotomy were placed to suspend the atrial opening and a single loose suture mimicking robotic dynamic atrial retractor was additionally used to elevate the upper part of the atriotomy. The prepared chest plate and the heart were installed in the da Vinci Simulator Box, which had multiple orifices for the robotic arm placement.

The experienced robotic cardiac surgeons participating in the study were asked to select three part-procedures from real robotic cardiac operations, which they believed were most suitable for wet lab training for a console surgeon. The following tasks were chosen:

1. Robotic-assisted closure of the porcine atrium. Prior to task assessment two 15-cm-long Gore-Tex CV-3 sutures (W.L. Gore & Associates, USA) were placed at each corner of an 8-cm-long left atriotomy of the porcine atrium. The participant then was required to suture
the left atrium from both ends towards the middle of the atriotomy using robotic deBakey forceps and a needle driver leaving both sutures untied. Decision to skip a robotic-assisted knots tying was made deliberately as at some institutions it is done non-robotically by a bed-side assistant and we aimed to focus solely on the console surgeon in order to make the task reproducible across the different centers.

2. Robotic-assisted placement of 5 sutures in the mitral annulus of the porcine heart. A single 8-cm-long 2-0 PremiCron suture (B.Braun Surgical, Germany) was passed to the participant by an assistant and needed to be placed through the posteromedial, anterolateral trigone, P1, P2 and P3 segment of the porcine mitral valve using the aforementioned robotic instruments. After passing each segment the distal portion of the suture was cut by the participant allowing uninterrupted placement of the same suture without involvement of the assistant and thus entirely concentrating on the console surgeon performance.

3. Robotic-assisted harvesting of ITA. A 10 cm segment of ITA marked with a suture at both ends needed to be dissected from the porcine chest wall by the participant using robotic deBakey forceps and monopolar cautery hook.

Procedure

The experienced robotic cardiac surgeons familiarized themselves with the wet lab simulator and then performed each task five times. The robotic novices received a brief introduction to the da Vinci Surgical System and were shown videos of the procedures performed by experienced surgeons, highlighting basic operative techniques and relevant anatomy. They were then asked to do a warm-up round without recording to familiarize themselves with the wet lab simulator under the supervision of an experienced robotic cardiac surgeon. Next, the novices completed all three
exercises again (the first attempt) with the guidance of the same robotic surgeon, and this was used
to assess their performance. The second attempt for all novices was scheduled at a three-week
interval. During the study period, participants were not allowed to practice on any robotic
simulators or participate in robotic-assisted surgery.

Statistics

To determine reliability of the assessment, internal consistency and test/retest reliability
were assessed. Test/retest reliability was evaluated for the first two attempts by comparing the
TBS and mGEARS scores for all participants. The internal consistency of the mGEARS metrics
was calculated for the total number of attempts for each task. Generalizability (G) theory14 was
used to estimate the overall reliability of the mGEARS assessment tool based on the first two
attempts. A decision (D) study14 for each task was conducted to generate various generalizability
(G) coefficients and to explore the number of raters and repetitions needed to reach an acceptable
G-coefficient.

The TBS and mGEARS scores between the experienced robotic surgeons and the robotic novices
were compared for the first attempt.

To investigate the consequence of testing, a pass/fail level was determined using the "contrasting
groups" standard-setting method15. Both the observed and theoretical false positives/negatives
were calculated using the cumulative distribution function to account for a small number of
participants16.

Statistical analysis was performed using STATA/MP 17.0 (StataCorp, USA). Descriptive statistics
were calculated and expressed as medians and interquartile intervals and compared by the Kruskal-
Wallis test. Linear regression with robust variance estimation were used exploring relationships
between variables. Level of significance was defined as P value < 0.05. Reliability was reported as intraclass correlation coefficient (ICC). Cronbach’s alpha was used to report internal consistency reliability. Generalizability study model was defined as a crossed model (p x a x r) with a study participant (p) as the object of measurement and two random facets: attempts (a) and raters (r). A G-coefficient of 0.8 was considered as acceptable.

Results

Surgeons and surgical trainees from five different specialties and different European sites were recruited for the study by e-mail invitation sent to their surgical departments. The experienced robotic surgeons (n=4) were board certified cardiac surgeons who had robotic volume ranging from 55 to 350 robotic-assisted cardiac operations and were recruited from the Czech Republic, Belgium, the Netherlands, and Spain. Robotic novices (n=15) with less than 5 hours of experience on any robotic surgical system were recruited from departments of cardiothoracic surgery (n=7), abdominal surgery (n=4), urology (n=1), gynecology (n=2) and otolaryngology (n=1) in Denmark. Table 2 shows descriptive data on 19 study participants.

Content evidence

The decision to use both the time-based score and mGEARS assessment tool to measure robotic cardiac surgical skills was based on reported data for using these two scores for similar purposes in wet lab settings.¹⁷

Response process

Before performing the tasks, all participants were introduced to mGEARS and TBS scores including the penalties.

Internal structure
The test/retest reliability had an ICC of 0.7 for atrial closure, 0.45 for mitral stitches, and 0.37 for ITA dissection on TBS, and an ICC of 0.77, 0.65, and 0.23 on mean mGEARS score for the same tasks respectively. High internal consistency of five mGEARS items was found for all three tasks with Cronbach’s alpha 0.91 for the atrial closure, 0.92 for the mitral stitches, and 0.92 for the ITA harvesting. A generalizability study (Table 3) revealed that the largest percentage of variance (47.2%) for the atrial closure task accounted for the participants, followed by 26.7% for the same trait for the mitral stitches task. The lowest number (4.2%) in the variation among the participants was found for the ITA task. Relatively high systemic variation among the raters indicated that the raters had different levels of leniency/stringency for all three exercises: 21% for atrial closure, 33.7% for mitral stitches, and 33% for ITA dissection. The results of the D-studies (Fig.1) demonstrated a G-coefficient of 0.82 with two raters and two attempts for the atrial closure task, and three raters and six attempts needed to reach a G-coefficient of 0.79 for the mitral stitches exercise. It would require 20 attempts and 25 raters to reach the former coefficient for the ITA dissection.

Relations to other variables

On the first attempt significant differences in both TBS and the average mGEARS score were found between the experienced robotic surgeons and the robotic novices for the mitral stitches and atrial closure tasks, but not for ITA harvesting (Table 4).

Consequences

The maximum total time during the first attempt was 1222 seconds for the ITA task, 566 seconds for mitral sutures placement and 769 seconds for the closure of the left atrium. These maximum times were used for subsequent calculation of TBS for each task as followed:

ITA dissection = 1222 – Completion time – Errors
Mitral stitches = 566 – Completion time – Errors
Atrial closure = 769 – Completion time – Errors.

A pass/fail level for each task for both scores was established, and the theoretical numbers of passing novices (false positives) and failing experts (false negatives) were calculated to account for a small sample size (Fig. 2). Combining the cut-off points for TBS and mGEARS assessment tools against each other (Fig. 3) resulted in the following observed numbers: one passing novice and no failing experts for the atrial closure task, zero passing novices or failing experts for the mitral stitches exercise, and one passing novice and failing expert for the ITA dissection, based on blinded assessment.

Discussion

In this study, we investigated the validity of a simulation-based assessment of robotic-assisted cardiac surgery skills using a wet lab model across surgeons from multiple different European centers. We tested three wet lab tasks using two assessment tools (TBS and mGEARS score) and demonstrated that two out of three tasks could reliably discriminate between different levels of competence and can be used for competency assessment. We established a reliable pass/fail standard for each task, which can be used for credentialing of a robotic cardiac console surgeon in preclinical settings. We also investigated the validity of the modified GEARS score in wet lab settings, which supports its use in assessing overall robotic cardiac surgical skills. We recommend using both assessment tools to enhance evaluation of different aspects of competency in robotic cardiac surgical skills. To our knowledge, this is the first study to explore validity evidence for simulation-based assessment of robotic cardiac skills in a wet lab.

Currently, there are two pathways for robotic cardiac surgery wet lab training: robotic-assisted coronary revascularization and robotic-assisted intracardiac surgical training. Commonly used wet
lab models include porcine17, ovine18, and cadavers19. To our knowledge, there is no data comparing these models, and the choice of the model for robotic wet lab training depends on institutional routine, available resources, and legislation. Recent recommendations20 for robotic cardiac surgery training highlight wet lab laboratory training as an essential component. However, task selection can include various exercises for intracardial procedures such as sewing mitral bands or rings, neochordae implantation, valve resection, or atrial closure depending on the supervisor's choice. As surgical education is shifting toward competency-based education, there is a need for standard measurable settings for educational programs21. In our study, we chose a porcine model for robotic cardiac surgery wet lab training as this model was previously investigated and is relatively inexpensive and easily available in most instances. The three investigated tasks covered both robotic cardiac training pathways – the robotic-assisted coronary revascularization (ITA harvesting) and intracardiac surgery (mitral stitches and atrial closure).

The Global Evaluative Assessment of Robotic Skills (GEARS) score is considered a reliable assessment tool for assessing general robotic skills22. The assessment instrument is not specific to any particular robotic surgical procedure, and validity evidence for its use in robotic cardiac surgery has not previously been evaluated. By examining the internal structure of the exercises, we found a high internal consistency of the five investigated mGEARS domains for all three tasks, which is in agreement with the original GEARS work22 and indicates that even though the domains measure different characteristics (depth perception, bimanual dexterity, efficiency, force sensitivity, and robotic control), they are related to a single construct – robotic cardiac technical skills in the wet lab settings. We found that the mGEARS assessment tool can distinguish between novices and experienced robotic surgeons at the baseline in the atrial closure and mitral stitches tasks. However, in contrast to the existing literature17, the difference among the groups was not
statistically significant for the ITA exercise in our study. The score claims to have low variability among evaluators22, but we were not able to confirm these findings in the generalizability study demonstrating high systematic variation among the raters ranging from 21\% to 33\% depending on the task and revealing different stringency between the raters. One plausible explanation for this finding could be that the raters were not trained in the GEARS evaluation before the study started, which has implications for how GEARS may be used by untrained raters in the future. On the other hand, there were nearly no inconsistencies in the raters’ assessment of the attempt difficulty. The D study showed that competency in robotic cardiac surgical skills using the mGEARS assessment tool can be assessed in a valid way by two raters and two attempts for the atrial closure and by three raters and six attempts for the mitral stitches. Based on our data, it does not seem feasible to assess competency in the ITA dissection validly using the mGEARS score. Overall, our findings support the use of the mGEARS score as a measure of competence for the assessment of robotic-assisted intracardiac surgical training.

Another important consideration is that mGEARS does not take time into account, which is crucial for cardiac surgical procedures as the duration of aorta cross-clamping and extracorporeal circulation influence the outcomes of the procedures23. It necessitates adding time for the assessment of robotic cardiac surgical skills. In our study, we adapted the time-based score (TBS), which has previously been used to assess the effect of training of robotic cardiac in wet lab settings17. Time-based score assessment tool coincided with the mGEARS score in distinguishing between different levels of experience, demonstrating a significant difference among the novices and experienced surgeons at the baseline for the atrial closure and mitral stitches tasks, but alike mGEARS did not reach the defined level of significance for the ITA harvesting task. The reliability of the score based on the test/retest reliability was highest for the atrial closure and lowest for the
ITA dissection. These findings encourage the use of TBS as a reliable assessment tool to measure competency in the two former tasks.

The established pass/fail scores for the atrial closure and mitral stitches tasks discriminated reliably between the novices and experienced surgeons, allowing only a few passing novices and failing experts for both tasks, even after adjusting for a small sample size. Combining the two levels from both scores increased the ability to discriminate between different levels of experience even further, nearly eliminating failing experts and passing novices for the latter tasks. The proposed cut-off levels for mGEARS and TBS can be incorporated into proficiency-based curricula for robotic cardiac surgery wet-lab simulation training and can be used for credentialing in preclinical settings. The pass/fail score for the ITA harvesting task yielded a high number of theoretical false positives on TBS and a high number of theoretical false negatives on the mGEARS score. Alongside the insufficient validity evidence supporting the assessment of the ITA exercise, the determined pass/fail score appears to be an unreliable discriminator between competent and non-competent operators and warrants further investigation before it can be implemented for assessment purposes.

The porcine wet lab set-up described in the details in the study along with the investigated tasks demonstrated on the video can relatively easily be reproduced by other institutions making our work scalable and our pass/fail cut-off levels for TBS and mGEARS scores usable for other institutions. The results of the study should be considered as a starting point for standardization of robotic cardiac surgery skill testing.

Study Limitations
Even though, at the time of publication, this study includes the largest number of participants in a robotic cardiac wet lab simulation, the small sample size remains one of the major limitations, especially regarding the IMA harvesting task. Moreover, we did not train the raters in mGEARS assessment before the study began because we wished to explore the validity of mGEARS in the hands of untrained clinician supervisors. This could in part explain the high systemic variation among the raters. Finally, the time constraints of surgical participants included in the study from different international sites and departments forced us to choose only five mitral stitches. However, as both rings and bands are currently used in robotic mitral surgery depending on the surgeon's preference, the number of sutures either within the whole mitral annulus or only within the posterior annulus can be discussed. The proposed five sutures could be adopted for the sake of standard setting for credentialing.

Conclusions

This study provides sufficient evidence for using TBS and modified GEARS scores in evaluating robotic-assisted cardiac surgery skills in wet lab settings for intracardiac tasks. Combining both assessment tools enhances the evaluation of proficiency in robotic cardiac surgery, paving the way for standardized, evidence-based preclinical training and credentialing. We strongly recommend the incorporation of the standardized wet lab protocols used in this study into robotic cardiac surgery training programs to allow for improved efficiency of skill acquisition and to ensure better and safer surgical performances.

Acknowledgments: Jane Petersson, RFNA, Juan Ignacio Brignone, MD, Benedict Kjærgaard, DMSc, Sten Rasmussen, PhD.
References

8. Gillinov M, Mick S, Mihaljevic T, Suri RM. Watch one, do one, teach one. *J Thorac*

Table 1: Modified global evaluative assessment of robotic skills (mGEARS)²²

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth perception</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constantly overshoots target, wide swings, slow to correct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some overshooting or missing target, but quick to correct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accurately directs instruments in the correct plane to target</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bimanual dexterity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uses only one hand, ignores nondominant hand, poor and coordination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uses both hands, but does no optimize interaction between hands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expertly uses both hands in a complementary way to provide best exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inefficient efforts; many uncertain movements, constantly changing focus or persisting without progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow, but planned movement are reasonably organized</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confident, efficient, and safe conduct, maintains focus on task, fluid progression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force sensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rough moves, tears tissue, injures nearby structures, poor control, frequent suture breakage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handles tissues reasonably well, minor trauma to adjacent tissue, rare suture breakage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applies appropriate tension, negligible injury to adjacent structures, no suture breakage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robotic control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consistently does not optimize view, hand position, or repeated collisions even with guidance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View is sometime not optimal. Occasionally needs to relocate arms. Occasional collisions and obstruction of assistant.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls camera and hand position optimally and independently. Minimal collisions or obstruction of assistant.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Baseline characteristics of participants (n = 19)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Novices</th>
<th>Experienced surgeons</th>
<th>Total</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>15</td>
<td>4</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Age (years), median (iqr)</td>
<td>47 (37; 56)</td>
<td>44 (42; 53)</td>
<td>45 (42; 55)</td>
<td>0.92</td>
</tr>
<tr>
<td>Sex (female), n</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0.18</td>
</tr>
<tr>
<td>Specialist (yes), n</td>
<td>12</td>
<td>4</td>
<td>16</td>
<td>0.33</td>
</tr>
<tr>
<td>Work experience, median (iqr)</td>
<td>5 (2; 17)</td>
<td>13 (11; 26)</td>
<td>10 (3; 17)</td>
<td>0.12</td>
</tr>
</tbody>
</table>

iqr - interquartile range, * – board certified specialist.
Table 3: The contribution of sources of variance to mGEARS assessment tool

<table>
<thead>
<tr>
<th>Source of variance</th>
<th>Description</th>
<th>Atrial closure VC (%)</th>
<th>Mitral stitches VC (%)</th>
<th>ITA dissection VC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant</td>
<td>“True score” variance for the participant</td>
<td>12.2 (47.2)</td>
<td>9.5 (26.7)</td>
<td>1.4 (4.2)</td>
</tr>
<tr>
<td>Attempt</td>
<td>Systematic variation among attempts</td>
<td>0 (0)</td>
<td>1.5 (4.4)</td>
<td>4 (12.2)</td>
</tr>
<tr>
<td>Raters</td>
<td>Systematic variation among raters</td>
<td>5.4 (21)</td>
<td>12 (33.7)</td>
<td>10.8 (32.9)</td>
</tr>
<tr>
<td>Interaction between participants and attempts</td>
<td>Inconsistencies in participants’ performance between attempts</td>
<td>0.4 (1.6)</td>
<td>2.9 (8.3)</td>
<td>2.9 (8.9)</td>
</tr>
<tr>
<td>Interaction between participants and raters</td>
<td>Inconsistencies in raters’ assessment of a participants’ skill</td>
<td>1.5 (6.1)</td>
<td>5.5 (15.6)</td>
<td>4.1 (12.5)</td>
</tr>
<tr>
<td>Interaction between raters and attempts</td>
<td>Inconsistencies in attempt difficulty by rater</td>
<td>0 (0)</td>
<td>1.3 (3.7)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Residual error</td>
<td>All remaining variability</td>
<td>6.2 (24.1)</td>
<td>2.7 (7.6)</td>
<td>9.7 (29.3)</td>
</tr>
</tbody>
</table>

VC – variance component, % - percent variance
Table 4: Comparing novices’ and experienced surgeons’ performance at baseline

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Novices mean±SD</th>
<th>Experienced surgeons mean±SD</th>
<th>Effect mean difference (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial closure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>15</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBS (seconds)</td>
<td>135±170</td>
<td>553±47</td>
<td>- 417 (-522; -312)</td>
<td><0.001</td>
</tr>
<tr>
<td>mGEARS</td>
<td>12.1±2.5</td>
<td>19.8±5</td>
<td>- 7.6 (-12.6; -2.6)</td>
<td>0.01</td>
</tr>
<tr>
<td>Mitral stitches</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>15</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBS (seconds)</td>
<td>139±108</td>
<td>425±11</td>
<td>- 286 (-347; -225)</td>
<td><0.001</td>
</tr>
<tr>
<td>mGEARS</td>
<td>10.8±2.5</td>
<td>19.6±3.5</td>
<td>- 8.8 (-12.5; -5.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>ITA harvesting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>15</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBS (seconds)</td>
<td>447±300</td>
<td>638±240</td>
<td>- 192 (-496; 113)</td>
<td>0.2</td>
</tr>
<tr>
<td>mGEARS</td>
<td>11.4±1.8</td>
<td>16.3±5.5</td>
<td>- 4.9 (-11; 1)</td>
<td>0.1</td>
</tr>
</tbody>
</table>

SD – standard deviation, CI – confidence interval.
Figures

Figure 1: Number of attempts evaluated by raters in order to reach a G-coefficient of 0.8. ITA, internal thoracic artery.

Figure 2: Determining pass/fail level using the “contrasting groups” method for time-based score (TBS) and modified global evaluative assessment of robotic skills score (mGEARS) in three wet lab tasks. ITA, internal thoracic artery.

Figure 3: Pass/fail levels for time-based score (TBS) and modified global evaluative assessment of robotic skills score (mGEARS) combined against each other. ITA, internal thoracic artery.

Figure 4: Simulation-based Assessment of Robotic Cardiac Surgery Skills.

Video: Simulation-based Assessment of Robotic Cardiac Surgery Skills.
Can Time-based score (TBS) and modified Global Evaluative Assessment of Robotic Skills (mGEARS) score be used for assessment of robotic cardiac surgery skills in wet lab?

<table>
<thead>
<tr>
<th>Participants</th>
<th>3 wet lab tasks</th>
<th>Results</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 experienced robotic cardiac surgeons</td>
<td>Left atrial closure</td>
<td>TBS and mGEARS score could reliably discriminate between different levels of competence for atrial closure and mitral stitches tasks.</td>
<td>The use of TBS and mGEARS provides reliable assessment of certain robotic-assisted cardiac surgery skills in wet lab. A credible pass/fail standard for credentialing of a robotic cardiac console surgeon in preclinical settings is established. We strongly recommend the incorporation of the standardized wet lab protocols used in this study into all robotic cardiac surgical training programs to allow for improved efficiency of skill acquisition and to ensure better and safer surgical performances.</td>
</tr>
<tr>
<td>15 surgeons without robotic experience</td>
<td>Internal thoracic artery (ITA) dissection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitral stitches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rater 1</td>
<td>All the tasks assessed using:</td>
<td>Pass/fail cut-off level (vertical dashed line) to determine proficiency. Combining both scores enhances evaluation of proficiency.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• mGEARS score by two raters blinded to the identity and experience level of the participants and to each other’s rating</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TBS rated on site by principal investigator</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[@AATSJournals](https://twitter.com/@AATSJournals)