Determining the Optimal Time to report Mortality after Lobectomy for Lung Cancer: An Analysis of the Time-Varying Risk of Death

Matthew Wong, Aina Pons, BSc PGCert, Paulo De Sousa, BSc, PgDip, RGN, Chiara Proli, MD, Simon Jordan, MB BCh, MD, FRCS, Sofina Begum, MB ChB, MSc, FRCS, Silviu Buder, MB BCh, MSc, FRCS, Vladimir Anikin, MD, FRCS, Jonathan Finch, MBBS, FRCS, Nizar Asadi, MD, FRCS, Emma Beddow, MBBS, FRCS, Eric Lim, MB ChB, MD, MSc, FRCS

PII: S2666-2736(23)00223-1
DOI: https://doi.org/10.1016/j.xjon.2023.08.009
Reference: XJON 854

To appear in: JTCVS Open

Received Date: 27 February 2023
Accepted Date: 31 July 2023

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2023 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Determining the Optimal Time to report Mortality after Lobectomy for Lung Cancer: An Analysis of the Time-Varying Risk of Death

Matthew Wong1,2; Aina Pons BSc PGCert1,2; Paulo De Sousa BSc, PgDip, RGN1,2; Chiara Proli MD1,2; Simon Jordan MB BCh, MD, FRCS2; Sofina Begum MB ChB, MSc, FRCS2; Silviu Buder MB BCh, MSc, FRCS2; Vladimir Anikin MD, FRCS2; Jonathan Finch MBBS, FRCS2; Nizar Asadi MD, FRCS2; Emma Beddow MBBS, FRCS2; Eric Lim MB ChB, MD, MSc, FRCS1,2,3

Affiliations

1. Academic Division of Thoracic Surgery, Royal Brompton Hospital, London, United Kingdom
2. Department of Thoracic Surgery, Royal Brompton and Harefield Hospitals, London, United Kingdom
3. Imperial College London, London, United Kingdom

Manuscript Text Word Count: 2385

Disclosure Statement:

Eric Lim reports personal fees from Covidien, Roche, Lilly Oncology, Boehringer Ingelheim, Medela, Ethicon, AstraZeneca, Beigene, Roche, BMS, grants and personal fees from ScreenCell, grants from Clearbridge Biomedics, Illumina, Guardant Health, outside the submitted work; In addition, EL has patents P52435GB and P57988GB issued to Imperial Innovations. EL is Director of lung screening at Cromwell Hospital, Chief Investigator for
VIOLET NIHR HTA (13/04/03), MARS 2 NIHR HTA (15/188/31), RAMON NIHR HTA (131306) and founder of My Cancer Companion Healthcare Companion Ltd.

PDS personal fees from Vitae Professionals outside the submitted work.

All other authors have nothing to declare.

Funding Statement:

This work received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Corresponding author:

Professor Eric Lim, MB ChB, MD, MSc (Biostatistics), FRCS (C-Th)

Academic Division of Thoracic Surgery,

Royal Brompton Hospital,

Sydney Street, London SW3 6NP, United Kingdom

e-mail: E.Lim@rbht.nhs.uk
Glossary of Abbreviations

AIC – Akaike Information Criteria
CABG – Coronary Artery Bypass Grafting
CI – Confidence Interval
NCDB – National Cancer Data Base
NLCA – National Lung Cancer Audit
NSCLC – Non-Small Cell Lung Cancer
STS – Society of Thoracic Surgeons

Central Picture

In-hospital mortality best captures the early hazard of death associated with lobectomy for lung cancer

Legend: In-hospital mortality best captures the early hazard of death after lobectomy
Central Message (200 character limit including spaces)
The time point for measuring surgical mortality remains arbitrary. Measuring mortality at the earliest instance after lobectomy may best represent the time-varying risk of death for lung cancer.

Perspective Statement (405 character limit including spaces)
The time point at which surgical mortality is measured differs across various institutions and national databases. Our findings suggest in-hospital mortality is the optimal time point in measuring mortality for patients undergoing lobectomy for lung cancer as it is the time point which best captures the early phase hazard in the immediate postoperative period.
Structured Abstract

Word Count 249/250

Objective

Surgical mortality has traditionally been assessed at arbitrary intervals out to one year, without an agreed optimum time point. The aim of our study was to investigate the time-varying risk of death after lobectomy to determine the optimum period to evaluate surgical mortality rate after lobectomy for lung cancer.

Methods

We performed a retrospective study of patients undergoing lobectomy for lung cancer at our institution from 2015 to 2022. Parametric survival models were assessed and compared to a nonparametric kernel estimate. The hazard function was plotted over time according to the best fit statistical distribution. The time points at which instantaneous hazard rate peaked and stabilised in the one-year period after surgery was then determined.

Results

During the study period, 2,284 patients underwent lobectomy for lung cancer. Cumulative mortality at 30, 90 and 180-days were 1.3%, 2.9% and 4.9% respectively. Log-logistic distribution showed the best fit compared to other statistical distribution, indicated by the lowest Akaike Information Criteria value. The instantaneous hazard rate was greatest during the immediate postoperative period (0.129; 95% CI, 0.087-0.183) and diminishes rapidly within the first 30 days after surgery. Instantaneous hazard rate continued to decrease past 90-days and stabilised only at around 180 days.

Conclusions
In-hospital mortality is the optimal follow-up period that captures the early-phase hazard during the immediate postoperative period after lobectomy. 30-day mortality is not synonymous to “early mortality” as instantaneous hazard rate remains elevated well past the 90-day time point and only stabilises around 180 days after lobectomy.

Key Words: Lobectomy, Lung Cancer, Mortality, Hazard Function, Outcomes Analysis
Introduction

Postoperative mortality is the most commonly used outcome metric to evaluate surgical quality and is routinely measured and reported by surgeons, institutions and healthcare bodies. Despite a number of shortcomings, it is still considered as the objective measure to assess surgical performance, evaluate hospital quality and is often cited as a benchmark for quality improvement initiatives.

The magnitude of postoperative mortality is dependent on the follow-up time. In the context of thoracic surgical procedures, the two most commonly used time points are 30-day and 90-day mortality. Numerous studies have established the importance of tracking beyond the 30-day period, and suggested 90-day mortality as a more accurate picture of the postoperative outcomes after pulmonary resection, as mortality was nearly double that of 30-days.

Although many different time points for mortality have been reported, each remains as an arbitrary determination for predicting mortality after surgery. There is no current consensus on the optimum time point(s) to evaluate this outcome as little is known on the relationship between risk of death and time.

We therefore sought to quantify the instantaneous hazard rate after surgery to help understand and inform on the optimal follow-up period for assessing mortality after lobectomy for lung cancer.

Methods

All patients who underwent pulmonary lobectomy for lung cancer were retrospectively reviewed from a prospectively collected database from January 2015 to February 2022 at the Royal Brompton and Harefield Hospitals.
Clinical variables, patient demographics and mortality data were obtained from an electronic databases and patient medical records. This study was approved by the Quality and Safety Department at the Royal Brompton Hospital as a service evaluation, and was registered via CIRIS (Continuous Improvement in Regulated Industries and Services) with project identification number 4761.

Continuous data were presented as mean with standard deviation (SD) or median with interquartile range as appropriate to the data distribution. Categorical and count data were presented as frequency and percentage (%). Parametric survival models were created using the following statistical distributions: Exponential, Weibull, Gompertz, Gamma, Lognormal, Log-Logistic and Generalised Gamma. Model selection was conducted using the Akaike information criterion (AIC) to assess which distribution has the best fit as compared to the nonparametric kernel estimate model. The most appropriate parametric model was then superimposed against nonparametric Kaplan Meier survival estimates for visual inspection of model fit. We calculated and plotted the hazard function over time with time zero defined as the day of the procedure according to the best fit statistical distribution. To address the concern of heterogeneity in our cohort, we performed a sub-analysis focusing specifically on the hazard function of death in the one-year postoperative period after lobectomy for patients with early stage (Stage IA and IB) non-small cell lung cancer (NSCLC). In this analysis, the nonparametric kernel estimate model was utilised as it provides a more flexible modelling approach without making assumptions about the shape of the distribution in a smaller cohort focusing solely on the one-year postoperative period. The time points at which instantaneous hazard rate peaked and stabilised in the one-year period after surgery was then determined in
this specific cohort of patients. Statistical analysis were undertaken using R 4.2.0 (R
Foundation for Statistical Computing, Vienna, Austria).

Results
A total of 2,284 patients who underwent pulmonary lobectomy for lung cancer between 2015
and 2022 were included in our analysis. The mean age (SD) of the cohort was 68 (10) years
of which 1,066 (47%) were men. The majority of patients had a history of tobacco use.
Comorbid cardiopulmonary diseases were common, with 296 (13.0%) having ischemic heart
disease and 569 (24.9%) having chronic obstructive pulmonary disease among the study
cohort. The median (IQR) time to follow-up of 32 (15-55) months and the 1- and 5-year
overall survival rate of 90% and 67% respectively. The baseline characteristics, demographic
profile, pathologic stage and comorbidities are presented in Table 1.

On parametric survival modelling, log-logistic distribution demonstrated the best goodness of
fit when compared to other statistical distribution with the lowest AIC value of 3992.238.
The hazard functions derived from the parametric survival models were then plotted against
non-parametric kernel estimation as presented in Figure 1. Parametric survival estimates
using the log-logistic distribution was then superimposed against the Kaplan-Meier survival
estimate, which demonstrated a good visual fit. An analysis of the overall hazard function for
the total follow-up period as presented in Figure 2 indicates that the instantaneous hazard rate
is highest in the immediate postoperative period and diminishes rapidly during the first year
after lobectomy and continues to decrease at a slower rate during the course of the remaining
follow-up period of over 7 years.
As a majority of the instantaneous hazard rate diminishes within the first year after lobectomy, further analysis was done to investigate the hazard function within one year after surgery as demonstrated in Figure 3. The instantaneous hazard rate was at its peak immediately after surgery (0.129; 95% CI, 0.087-0.183), and decreased rapidly during the first 30-day period after lobectomy. It continued to remain elevated through the 90-day time point and then stabilised at around 180 days (0.100; 95% CI, 0.090-0.110). Moreover, at the 180-day time point, mortality rate was 4.9%, an additional 3.6% as compared to the 1.3% that was captured by 30-day mortality.

Furthermore, a detailed sub-analysis was conducted with a homogenous subset of 1,179 patients with Stage IA and IB NSCLC undergoing lobectomy. An analysis of the non-parametric kernel density estimates as demonstrated in Figure 4 showed that the instantaneous hazard rate was similarly at its peak immediately after surgery and decrease rapidly through the 30-day and 90-day timepoints. However, instead of stabilisation, the hazard function of death reaches a nadir at 182 days and then gradually increased for the remainder of the one-year period. Therefore, capturing 180-day mortality is likely to be the longest extent to which surgical factors are likely to have any residual influence.

Discussion

The results of our study suggests that the instantaneous hazard rate decreases rapidly from its peak immediately after surgery until the 90-day time point, stabilising around 180 days and reducing gradually thereafter. In the sub-analysis of Stage I NSCLC patients undergoing lobectomy, the hazard function was similarly composed of an early decrease phase, reaching a nadir at 182 days before a late increasing phase. In thoracic surgery, commonly reported time points when reporting and comparing mortality include in-hospital, 30 and 90-days. If
the aim for quality metrics is to measure and compare the greatest impact of surgery on risk of death, our results suggest the time point should be closest to the time of operation as applied by risk models such as Thoracoscore and the European Society Objective Score (ESOS.01) that evaluate in-hospital mortality\(^7\). Whilst many institutions and risk models use different time points, few have explored the impact of the continuum of risk when determining the optimum time to assess mortality. From our estimates, the hazard function for lobectomy stabilises around 180 days. A substantial number of deaths occurred in between the 31 to 180 day period, resulting in an over threefold increase in mortality at 180 days (4.9\%) compared with mortality at 30 days (1.3\%). Furthermore, with 41\% of deaths during the first 180 days after surgery falling outside of the time point and definition of 90-day mortality, it is evident that the traditional measures of 30 and 90-day mortality underreport as the comparative time interval increases.

The 30-day time point is the most commonly period to evaluate surgical performance in large scale national databases. A study of surgery for 8 different cancers including lung cancer recommended the use of 30-day mortality as an international reporting standard\(^8\). Currently, the Society of Thoracic Surgeons (STS) Lung Cancer Resection Risk Model is used to predict 30-day mortality in thoracic surgery\(^9\). Significant advances in surgical techniques, perioperative care has significantly reduced postoperative 30-day mortality across all spectrums of surgical procedures, prompting thoracic surgeons to extend the postoperative mortality timeframe beyond 30 to 90 days. Pezzi and colleagues conducted a retrospective analysis of 124,418 patients undergoing pulmonary resection from the National Cancer Data Base (NCDB) and concluded that the overall 90-day conditional mortality rate was 2.6\%, which was nearly as high as the overall 30-day mortality rate of 2.8\%\(^6\). While Powell and colleagues compared 30 and 90-day mortality in 10,991 patients from the United Kingdom’s
National Lung Cancer Audit (NLCA), and reported that the 3% mortality rate at 30 days almost doubled to 5.9% at the 90 day time point. Powell et al. also demonstrated no significant differences in demographic, comorbidities and tumour characteristics between those who died within 30 days or 31–90 days after surgery10. Moore and colleagues examined the change in hospital rankings at various time points after lung resection surgery for non-small cell lung cancer, and reported rankings fluctuated most during the early mortality time point of 30-days and only demonstrated less variability when mortality was assessed after the 90-day period11. Identifying the optimal time point to assess mortality after lobectomy is therefore critical as it has direct implications on both patient care and also hospital benchmarking for quality improvement initiatives.

The use of parametric hazard function modelling approach has enabled us to better understand the time-varying trends of mortality after lobectomy. Blackstone et al. suggested that the hazard function can be subdivided into an early, constant and a late phase12 and concluded that the early hazard for death after coronary artery bypass grafting (CABG) did not stabilise until around 6 months (approximately 180 days), arguing that in order to perform an optimal measurement of periprocedural mortality, in-hospital mortality and mortality after 180 days should be utilise together to better capture the early phase of hazard associated with CABG13. To identify an optimal cut-off time point for assessing postoperative mortality after lobectomy for lung cancer, we specifically evaluated the early phase of the hazard function within the 1 year postoperative period. Central to the philosophy of “optimum” is to understand why we need to capture this information. If it is to assess surgical risk management, quality and care, then in-hospital mortality is the optimum time point in measuring the highest risk of death after lobectomy. However, it is also important that surgeons recognise the argument for arbitrarily defined 30-day mortality as a synonym to
“early postoperative mortality” is flawed as risk of death from surgery continues well beyond the 30 day time point until 180 days as suggested from our study. Hence, 180-day mortality is likely to be the longest timeframe to address any surgical factors associated with mortality after lobectomy for lung cancer.

It is noteworthy that the hazard function methodology, originally introduced by Blackstone12, has been applied not only in the context of CABG but also extended to thoracic surgical procedures including pneumonectomy. In a notable study conducted by Jones et al.13, this novel approach was utilized to analyse the hazard function of death following pneumonectomy in a cohort of 355 patients. Their findings revealed a distinct temporal pattern, with the hazard function reaching a nadir at 90 days post-pneumonectomy, followed by a gradual increase throughout the remaining year. This contrasts with our study, where we observed a stabilizing trend and nadir around 180 days after lobectomy. This may be due to the difference in patient characteristics, with nearly half (48\%) of the patients being pathologic stage III as compared to our study of 13.3\%. Additionally, in a propensity-matched analysis comparing lobectomy and pneumonectomy by Jones et al.15, it was also revealed that pneumonectomy patients were at significantly higher risk of major complications and death at 90 days, further highlighting the differences in the pattern of mortality after these two procedures. These disparate temporal patterns in the hazard function suggests that different extent of lung resections exhibit unique dynamics in postoperative mortality. The variations observed between our study on lobectomy and the study by Jones et al. on pneumonectomy ultimately underscore the significance of considering procedure-specific characteristics when evaluating mortality outcomes. Further studies utilising hazard function methodology in the context of other thoracic surgical procedures would provide valuable insights into the variation in the trends of mortality and
morbidity after surgery so that surgical outcomes can be better assessed and compared across national databases.

Study Limitations

To our knowledge, this is the first study to define an optimal time point for assessing mortality after pulmonary lobectomy for lung cancer. However, there are several limitations to our study. Firstly, this study represents a retrospective analysis of patients treated at a single high-volume institution, which may limit the generalizability of our observations. Secondly, while the use of a longer follow-up time point to assess postoperative mortality allows for a greater number of surgical-related deaths to be captured, it may simultaneously account for a larger number of disease-related death. As the cause of death is not reported in databases in our institution, we currently lack the granularity in discriminating between the competing hazards of disease related and surgery-related deaths. Therefore, the use of longer follow-up time points may possibly overestimate surgical-related mortality among patients with lung cancer. However, we believe that while lung cancer patients are at risk of dying from oncologic causes, for the population of patients with early stage lung cancer (who constitute a majority of our study cohort and patients undergoing pulmonary lobectomy in general), oncologic-related death within 180 day mortality is not commonly observed, with most deaths within the period more attributable towards surgical-related or non-oncologic causes. Moreover, in the time-varying analysis of mortality after pneumonectomy by Jones et al., oncologic causes of death were negligible during the initial early phase decrease in hazard and was only observed after the nadir was reached. Lastly, our study was limited to lobectomy only. The hazard function of death may differ in other lung resection procedures.

Conclusion
Our results suggest that the optimal time point to assess surgical risk management, quality and care is in-hospital mortality (figure 5). Among metrics that are commonly reported in thoracic surgery databases, 30-day mortality rate may underestimate the true risk of lobectomy as we did not observe any specific point of a stabilisation in the hazard function to warrant an arbitrary 30-day cut off since instantaneous hazard rates continues to be elevated well beyond hospital discharge to 180 days and reducing gradually thereafter. This study echoes concerns raised that 30-day mortality may not be the most optimum and appropriate metric for comparing surgical outcomes in nationwide databases and application in lung resection risk models.
References

Table 1. Overall Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>No. (%) or Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>2284</td>
</tr>
<tr>
<td>Mean age (SD)</td>
<td>68 (10)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>1066 (47%)</td>
</tr>
<tr>
<td>Smoking (Current and Ex-Smoker), n (%)</td>
<td>1776 (78%)</td>
</tr>
<tr>
<td>Approach, n (%)</td>
<td></td>
</tr>
<tr>
<td>Video-Assisted Thoracoscopic Surgery</td>
<td>1257 (55%)</td>
</tr>
<tr>
<td>Thoracotomy</td>
<td>1023 (45%)</td>
</tr>
<tr>
<td>FEV1, %</td>
<td>89.0 (76.0 – 103.1)</td>
</tr>
<tr>
<td>Histology, n (%)</td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>1426 (62.4%)</td>
</tr>
<tr>
<td>Squamous Cell Carcinoma</td>
<td>415 (18.2%)</td>
</tr>
<tr>
<td>Large Cell Carcinoma</td>
<td>33 (1.4%)</td>
</tr>
<tr>
<td>Others</td>
<td>410 (18.0%)</td>
</tr>
<tr>
<td>Pathologic Stage, n (%)</td>
<td></td>
</tr>
<tr>
<td>IA</td>
<td>1024 (44.8%)</td>
</tr>
<tr>
<td>IB</td>
<td>377 (16.5%)</td>
</tr>
<tr>
<td>IIA</td>
<td>164 (7.2%)</td>
</tr>
<tr>
<td>IIB</td>
<td>278 (12.2%)</td>
</tr>
<tr>
<td>IIIA</td>
<td>266 (11.6%)</td>
</tr>
<tr>
<td>IIIB</td>
<td>38 (1.7%)</td>
</tr>
<tr>
<td>IVA</td>
<td>41 (1.8%)</td>
</tr>
<tr>
<td>COPD, n (%)</td>
<td>569 (24.9%)</td>
</tr>
<tr>
<td>Ischemic Heart Disease, n (%)</td>
<td>296 (13.0%)</td>
</tr>
</tbody>
</table>
Figure 1. Parametric Hazard Functions applied with different statistical distributions
Figure 2. Overall Log-Logistic Hazard Function of total follow-up time
Figure 3. Close up analysis of Hazard Function within the First year after Lobectomy
Figure 4. Sub-analysis of the Hazard Function for Stage I NSCLC within the first year of lobectomy
Figure 5. Graphical Abstract

Determining the Optimum Time to report Mortality after Lobectomy for Lung Cancer: An Analysis of the Time-Varying Risk of Death

<table>
<thead>
<tr>
<th>Methods</th>
<th>Results</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrospective Analysis of 2,284 who underwent pulmonary lobectomy for lung cancer from 2015-2022 using parametric survival models and hazard function model</td>
<td>Instantaneous hazard of death was at its peak in the immediate postoperative period</td>
<td>In-hospital mortality is the optimal follow-up period that captures the early-phase hazard during the immediate postoperative period after lobectomy</td>
</tr>
<tr>
<td></td>
<td>Stabilisation of hazard occurred well past 90 days at around 180 days after lobectomy</td>
<td></td>
</tr>
</tbody>
</table>
Figure Legends

Figure 1. Parametric Hazard Functions applied with different statistical distributions
There were seven statistical distributions applied and parametric survival models were created using the following seven statistical distributions: Exponential, Weibull, Gompertz, Gamma, Lognormal, Log-Logistic and Generalised Gamma. The lowest AIC represented the best fit model as compared to a nonparametric kernel estimate model, as represented by the black line. The kernel density line is a non-parametric estimate of the varying risk of an event occurring over time. It uses smooth, symmetric functions (kernels) to estimate the hazard at different time points, providing insights into the temporal patterns of risk. Log-logistic distribution, as represented with the purple line, demonstrated the best fit with the lowest AIC value of 3992.238.

Figure 2. Overall Log-Logistic Hazard Function of total follow-up period
In this evaluation of the overall hazard function of the total follow-up period as plotted with the best fit log-logistic distribution, the instantaneous hazard was at its maximum in the immediate postoperative period and rapidly decreases during the first year after lobectomy, constituting around half of the decrease in instantaneous hazard in the total follow-up period. The decrease is continuous after one year but at a much slower rate, and this continues for the remaining follow-up period.

Figure 3. Close-up analysis of Hazard Function within the First year after Lobectomy
A close-up analysis of the hazard function was conducted within the first year after lobectomy. 30-day, 90-day and 180-day mortality of our dataset of 2,284 patients were
plotted on the table and the respective time points were plotted onto the graph as demonstrated from the dotted lines.

Figure 4. Sub-analysis of the Hazard Function for Stage I NSCLC within the first year of lobectomy

A sub-analysis of the hazard function after lobectomy was conducted in a subset group of Stage I NSCLC patients. The shaded region corresponds to the 95% confidence interval. The hazard function decreased until it reached a nadir at 182 days. It gradually increased for the rest of the remaining period of time 1 year after lobectomy.

Figure 5. Graphical Abstract

In this retrospective analysis of the time-varying risk of death for 2,284 patients who underwent lobectomy for lung cancer, the instantaneous hazard of death was greatest in the immediate postoperative period and continued to decrease past 90-days and stabilised only at around 180 days.
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No. (%) or Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>2284</td>
</tr>
<tr>
<td>Mean age (SD)</td>
<td>68 (10)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>1066 (47%)</td>
</tr>
<tr>
<td>Smoking (Current and Ex-Smoker), n (%)</td>
<td>1776 (78%)</td>
</tr>
<tr>
<td>Approach, n (%)</td>
<td></td>
</tr>
<tr>
<td>Video-Assisted Thoracoscopic Surgery</td>
<td>1257 (55%)</td>
</tr>
<tr>
<td>Thoracotomy</td>
<td>1023 (45%)</td>
</tr>
<tr>
<td>FEV1, %</td>
<td>89.0 (76.0 – 103.1)</td>
</tr>
<tr>
<td>Histology, n (%)</td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>1426 (62.4%)</td>
</tr>
<tr>
<td>Squamous Cell Carcinoma</td>
<td>415 (18.2%)</td>
</tr>
<tr>
<td>Large Cell Carcinoma</td>
<td>33 (1.4%)</td>
</tr>
<tr>
<td>Others</td>
<td>410 (18.0%)</td>
</tr>
<tr>
<td>Pathologic Stage, n (%)</td>
<td></td>
</tr>
<tr>
<td>IA</td>
<td>1024 (44.8%)</td>
</tr>
<tr>
<td>IB</td>
<td>377 (16.5%)</td>
</tr>
<tr>
<td>IIA</td>
<td>164 (7.2%)</td>
</tr>
<tr>
<td>IIB</td>
<td>278 (12.2%)</td>
</tr>
<tr>
<td>IIIA</td>
<td>266 (11.6%)</td>
</tr>
<tr>
<td>IIIIB</td>
<td>38 (1.7%)</td>
</tr>
<tr>
<td>IVA</td>
<td>41 (1.8%)</td>
</tr>
<tr>
<td>COPD, n (%)</td>
<td>569 (24.9%)</td>
</tr>
<tr>
<td>Ischemic Heart Disease, n (%)</td>
<td>296 (13.0%)</td>
</tr>
</tbody>
</table>
Determining the Optimum Time to report Mortality after Lobectomy for Lung Cancer: An Analysis of the Time-Varying Risk of Death

Methods

Retrospective Analysis of 2,284 who underwent pulmonary lobectomy for lung cancer from 2015-2022 using parametric survival models and hazard function model

Results

Instantaneous hazard of death was at its peak in the immediate postoperative period

Stabilisation of hazard occurred well past 90 days at around 180 days after lobectomy

Implications

In-hospital mortality is the optimal follow-up period that captures the early-phase hazard during the immediate postoperative period after lobectomy
<table>
<thead>
<tr>
<th>Methods</th>
<th>Results</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrospective Analysis of 2,284 who underwent pulmonary lobectomy for lung cancer from 2015-2022 using parametric survival models and hazard function model</td>
<td>Instantaneous hazard of death was at its peak in the immediate postoperative period. Stabilisation of hazard occurred well past 90 days at around 180 days after lobectomy</td>
<td>In-hospital mortality is the optimal follow-up period that captures the early-phase hazard during the immediate postoperative period after lobectomy</td>
</tr>
</tbody>
</table>
Determining the Optimum Time to report Mortality after Lobectomy for Lung Cancer: An Analysis of the Time-Varying Risk of Death

<table>
<thead>
<tr>
<th>Methods</th>
<th>Results</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrospective Analysis of 2,284 who underwent pulmonary lobectomy for lung cancer from 2015-2022 using parametric survival models and hazard function model</td>
<td>Instantaneous hazard of death was at its peak in the immediate postoperative period Stabilisation of hazard occurred well past 90 days at around 180 days after lobectomy</td>
<td>In-hospital mortality is the optimal follow-up period that captures the early-phase hazard during the immediate postoperative period after lobectomy</td>
</tr>
</tbody>
</table>