Acute Protein Kinase C beta Inhibition Preserves Coronary Endothelial Function After Cardioplegic Hypoxia/Reoxygenation

Shawn Kant, ScB, Hang Xing, PhD, Yuhong Liu, PhD, Elizabeth O. Harrington, PhD, Frank W. Sellke, MD, Jun Feng, MD, PhD

PII: S2666-2736(23)00175-4
DOI: https://doi.org/10.1016/j.xjon.2023.06.014
Reference: XJON 809

To appear in: JTCVS Open

Received Date: 12 March 2023
Accepted Date: 27 June 2023

Please cite this article as: Kant S, Xing H, Liu Y, Harrington EO, Sellke FW, Feng J, Acute Protein Kinase C beta Inhibition Preserves Coronary Endothelial Function After Cardioplegic Hypoxia/Reoxygenation, JTCVS Open (2023), doi: https://doi.org/10.1016/j.xjon.2023.06.014.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2023 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Acute Protein Kinase C Beta Inhibition Preserves Coronary Endothelial Function After Cardioplegic Hypoxia/Rexxygenation

18 mice total
6 CP-H/R (cardioplegia-hypoxia/reperfusion)
6 CP-H/R + RBX
6 Sham control

RBX selectively inhibits PKCbeta
PKCbeta influences SK channel activity
Coronary vessels from CP-H/R + RBX mice exhibited improved endothelium-dependent vasodilation in response to ADP and NS309 compared to untreated mice
RBX protected SK channel-mediated K currents following CP-H/R

Selecte inhibition of PKCbeta with RBX may help prevent adverse postoperative outcomes related to endothelial dysfunction following cardiac surgery involving CP-H/R

PKC = Protein Kinase C; CP-H/R = cardioplegic hypoxia-reperfusion; RBX = ruboxistaurin; SK = small conductance calcium activated potassium channel; ADP and NS309 = endothelium-dependent vasodilators
Acute Protein Kinase C beta Inhibition Preserves Coronary Endothelial Function After Cardioplegic Hypoxia/Reoxygenation

Shawn Kant¹, ScB, Hang Xing¹, PhD, Yuhong Liu¹, PhD, Elizabeth O. Harrington², PhD, Frank W. Sellke¹, MD, Jun Feng¹ MD, PhD

Institution and Affiliations: ¹ Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA; ²Vascular Research Laboratory, Providence VA Medical Center, Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA

Corresponding Author: Jun Feng, MD, PhD, 1 Hoppin Street, Coro West Room 5.229 Cardiothoracic Surgery Research Laboratory, Rhode Island Hospital Providence, RI 02903 Phone: (401) 793-8065; Fax: (401) 793-8224; jfeng@lifespan.org

Abstract word count: 250 Manuscript word count: 3039

Number of References: 35 Number of Figures: 6 Number of tables: 0

Date and number of IACUC approval: Original approval date: 5/18/2018; newest approval date: 4/26/2021; internal reference number: 502118 (original), 501721(newly)

Funding: This research project was mainly supported by the National Institute of Health (NIH) R01HL127072-01A1, R01 HL136347-01, and National Institute of General Medical Science (NIGMS) of 5P20-GM103652 (Pilot Project) to J.F., and 5P20-GM103652 to E.O.H.. This work was supported in part by R01HL136347-04S1 to J.F. and R01HL46716 and R01HL128831 to F.W.S.

Conflict of interests and any other disclosure: Conflict of interests: No potential conflicts of interest exist for all authors; Any other disclosure: No potential conflicts of interest exist for all authors.
Abbreviated Legend for Central Picture: Increased PKC beta activity contributes to post-cardiac surgery endothelial dysfunction.

Central Message

Treatment of tissue with a PKC beta inhibitor protects endothelial function and microvascular responsiveness to endothelium-derived vasodilators following cardioplegic hypoxia-reperfusion.

Perspective

Pretreatment with PKC beta inhibitors may be a useful therapeutic tool for preventing microvascular dysfunction following ischemia-reperfusion injury during cardiac surgery involving cardioplegia/cardiopulmonary bypass.
Glossary of Abbreviations

Protein Kinase C = PKC
Cardioplegia hypoxia-reperfusion = CP-H/R
Ruboxistaurin = RBX
Adenosine diphosphate = ADP
Endothelium-derived hyperpolarizing factor = EDHF
Nitric oxide = NO
Sodium Nitroprusside = SNP
Small conductance calcium activated potassium channels = SK channels
STRUCTURED ABSTRACT

Objective: Protein kinase C (PKC) influences myocardial contractility and susceptibility to long-term cardiac dysfunction after ischemia-reperfusion injury. In diabetes, PKC inhibition has a protective effect in terms of microvascular dysfunction. SK channel dysfunction also influences endothelial dysfunction in cardioplegic hypoxia-reperfusion (CP-H/R). Here, we examine whether acute inhibition of PKC beta protects against CP-H/R-induced coronary endothelial and SK channel dysfunction.

Methods: Isolated mouse coronary arterioles, half pretreated with selective PKC inhibitor ruboxistaurin (RBX), were subjected to hyperkalemic, cardioplegic hypoxia (1hr) and reoxygenation (1hr) with Krebs buffer. Sham control vessels were continuously perfused with oxygenated Krebs buffer without CP-H/R. After 1hr re-oxygenation, responses to the endothelium-dependent vasodilator adenosine-diphosphate (ADP) and the SK channel activator NS309 were examined. Endothelial SK-specific potassium currents from mouse heart endothelial cells (MHECs) were examined using whole-cell patch clamp configurations in response to NS309 and SK channel blockers apamin and TRAM34.

Results: CP-H/R significantly decreased coronary relaxation responses to ADP (p=0.006) and NS309 (p=0.0001) compared with Sham control group. Treatment with selective PKC beta inhibitor RBX significantly increased recovery of coronary relaxation responses to ADP (p = 0.031) and NS309 (p=0.004) after CP-H/R. Treatment with RBX significantly increased NS309 mediated potassium currents following CP-H/R (p = 0.0415). Apamin and TRAM sensitive currents were significantly higher in CP-H/R + RBX vs CP-H/R MHECs (p = 0.0027).
Conclusion: Acute inhibition of PKC beta significantly protected mouse coronary endothelial function after CP-H/R injury. This suggests that acute PKC beta inhibition may be a novel approach for preventing microvascular dysfunction during CP-H/R.

Keywords: protein kinase c, cardioplegia, hypoxia-reperfusion, ruboxistaurin, vascular reactivity,
INTRODUCTION

Coronary artery bypass grafting (CABG) is the most common cardiac surgical procedure performed in the United States [1]. Most CABG protocols are “on-pump”, using cardioplegic arrest and cardiopulmonary bypass (CP/CPB) to stop the heart while preserving the body’s circulation using an external heart-lung machine [2]. Despite decades of extensive innovation and refinement of novel cardioplegic solutions and optimizing techniques for cardioprotection during CPB, the risk of postoperative cardioplegic hypoxia/reperfusion (CP-H/R) injury remains high following CP/CPB [3].

Following CP-H/R, the coronary microcirculation exhibits increased propensity for vasospasm and myocardial malperfusion, with altered responsiveness to vasoactive substances such as serotonin, endothelin-1, thromboxaneA2, and neuropeptide Y [3][4]. Generalized endothelial dysfunction disrupts the balance between vasoconstriction and vasodilation through markedly impaired microvascular responses to endothelium-derived vasodilators such as nitric oxide (NO), prostacyclin, and endothelium-derived hyperpolarizing factors (EDHF) [3][5]. EHDF promotes vasodilation through the opening of small conductance calcium activated potassium channels (SK channels), which facilitate endothelial cell hyperpolarization and vascular smooth muscle relaxation [3][6]. We and others have previously found that CP-H/R injury inactivates/inhibits endothelial SK channels, observed through decreased responsiveness to various SK channel activators such as NS309 [7].

Protein kinase C (PKC) is a potential mediator of cardiovascular pathology in settings of ischemia and hypoxia-related injury, such as heart failure and myocardial infarction. Members of the PKC family can be broadly subdivided into three subgroups: classical PKCs (alpha, beta, and gamma); novel PKCs (delta, epsilon, eta, theta), and atypical PKCs (zeta, iota, and lambda) [8].
The classical PKCs are activated by calcium and phospholipids in contrast to novel and atypical isoforms, which are calcium-independent and activated only by specific lipids [9].

Transgenic mice engineered to overexpress PKC alpha exhibit decreased cardiac contractility, while PKC alpha knockout mice exhibit increased cardiac contractility and were less susceptible to heart failure after long term pressure overload stimulation or induction of ischemia-reperfusion injury [10][11]. Phosphorylation of PKC alpha at site threonine 638 positively correlated with increased left ventricular volume and reduced ejection fraction in pig models of heart failure following ischemia-reperfusion [12]. In contrast, PKC beta/gamma knockout mice exhibited more severe heart failure following long-term pressure overload [11]. Increased activity of the PKC delta and epsilon isoforms have been observed in the myocardium of patients following CPB and cardioplegic arrest [13].

Pharmacologic inhibition of PKC alpha/beta/gamma in mice using Ro-32-0432 and Ro-31-8220 increases cardiac contractility and confers partial protection against long-term decompensation and dilated cardiomyopathy after myocardial infarction [14]. Likewise, application of Ro-32-0432, Ro-31-8220, and ruboxistaurin (RBX) (Ruboxistaurin: LY 333531, 2007), another PKC inhibitor that specifically targets PKC beta, protects against heart failure, and reduced left ventricular ejection fraction in pig models of myocardial infarction [15][12].

Comparatively little work exists concerning the effects of PKC modulation in the microcirculation. In addition, while RBX has shown promise in the treatment of diabetic complications in which PKC plays a prominent role, including diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy, few studies have investigated whether treatment with PKC inhibitors such RBX might improve coronary microvascular function in the context of CP-H/R. In this study, we use a rodent model of CP-hypoxia/reoxygenation (H/R) to test whether
treatment with RBX protects against microvascular endothelial dysfunction in mouse small coronary arteries.

Finally, PKC is involved in numerous downstream cell-signaling pathways, including many involving cell membrane ion channels. For example, our group has implicated PKC beta in NADH-mediated SK channel dysfunction in human coronary artery endothelial cells, and other studies have shown that PKC-mediated signaling pathways influence cardiac sodium channel activity [16]. Hence, we also examined the effect of RBX on SK channel recording activity before and after CP-H/R.

METHODS

Animal Models and Heart Tissue Collection

18-16 week old C57BL/6J mice were used in this study, with equal parity between males and females. The Institutional Animal Care and Use Committee of Rhode Island Hospital approved all the experiments outlined in this section (Original approval date: 5/18/2018; newest approval date: 4/26/2021; internal reference number: 502118 (original), 501721(new). Each mouse underwent a thoracotomy to access the heart following anesthesia administration with inhaled isoflurane. Hearts were removed from the thorax by gently lifting at the apex and severing the great vessels. Following removal, hearts were immediately placed either in cold (4 degrees Celsius) Krebs buffer (1119 NaCl, 25 NaHCO3, 4.6 KCl, 1.2 KH2PO4, 1.2 MgSO4, 1.8CaCl2, 11 glucose, in mM, pH 7.4) for microvessel experiments or cell culture medium to prepare for endothelial cell isolation.

Experimental Groups
6 mouse hearts (3 from males, 3 from females) were assigned to each of 3 groups: sham controls, CP-H/R, and CP-H/R+RBX.

Microvessel Dissection and CP-H/R Simulation

Coronary arterial microvessels (70-100um in diameter) from the left anterior descending artery—dependent subepicardial region of the left ventricle were dissected manually from isolated mouse hearts according to previously described protocols [17] (Figure 1A). Following dissection, microvessels were placed in a microvessel organ chamber, where they were cannulated with 2 glass micropipettes (measuring 40-80 um in diameters), secured with 10-0 nylon monofilament sutures, and pressurized in a no-flow state. The microvessel chamber initially contained aerated (95% O₂, 5% CO₂) Krebs buffer solution maintained at 37 degrees Celsius. Vessels were allowed to remain under these conditions for 60 minutes for stabilization prior to initiation of experiments. Two consecutive 1-hour long exposures to oxygenated Krebs solution were the only conditions the sham control vessel group was exposed to. An inverted microscope (Olympus CK2, Olympus Optical) was uses to project microvessel images onto a monitor. Internal luminal diameters were measured using an electronic dimension analyzer.

In order to simulate the effects of ischemic cardioplegia during cardiac surgeries, an in-vitro CP-H/R model of microvessel injury was used. A modified St. Thomas hyperkalemic cardioplegic solution, consisting of 110 NaCl, 16 MgCl₂, 10 NaHCO₃, 20 KCl, 1.5 CaCl₂ (in mM, pH 7.4), bathed microvessels in the experimental groups for 5 minutes before onset of hypoxia. Following this, coronary arterioles were cooled in ice and then set again in St. Thomas solution for 60 minutes under hypoxic conditions at 4 degrees Celsius (bubbling a 5% CO₂, 95% N₂ gas mixture through the chamber). After 60 minutes of hypoxia, vessels were reoxygenated for 60 minutes at 37 degrees Celsius (using 95% O₂, 5% CO₂ gas mixture). Importantly, the
partial pressure of oxygen in the hypoxic cardioplegia reached a stable level below 30mmHg within 2 minutes of changing the bubbling gas. This helped to prevent true anoxic conditions because a small amount of oxygen continuously diffused into the circulated cardioplegic solution from the atmosphere. In CP-H/R + RBX group, the microvessels were bathed with 50nM of RBX 5 minutes before and during hypoxia and reoxygenation.

Microvascular Reactivity Assessment

Following exposures/treatments in the microvessel chambers, microvessels were pre-constricted with the endothelial vasoconstrictor endothelin-1 to between 30 and 50% of baseline vessel diameter, following a protocol that has been published previously [18][7][19]. Importantly, in our microvessel study, vessels were pre-dilated at constant pressure of 40 mmHg. Because of this, we needed to pre-constrict vessels by using endothelin-1 or U46619 prior to effectively studying vasodilatory responses. Once stable vasoconstriction was achieved, vasodilators were applied to test microvascular relaxation, including the SK channel activator NS309 (10^{-9}-10^{-5} M), endothelium-dependent vasodilator ADP (10^{-9}-10^{-4} M), and the endothelium-independent vasodilator SNP (10^{-9}-10^{-4} M) [20]. Drugs were applied in random order, and each vessel was exposed to 1 or 2 interventions.

CP-H/R Model of Endothelial Cells

Mouse heart endothelial cells (MHECs) were isolated from harvested mouse hearts (n =4) and cultured in EGM-2 MV medium (Lonza Biosciences, Alpharetta, GA) (Figure 1B). Endothelial cell biomarkers, such as CD31, were used to confirm that cultured cells were indeed endothelial cells. The CP-H/R model of MHECs is as follows: following isolation, MHECS were placed in a sealed chamber perfused with a high-nitrogen gas mixture (95% N\textsubscript{2}, 5% CO\textsubscript{2}) for 3
hours. After this MHECs were transferred to a normoxic culture incubator. For the RBX
treatment group, 50nM RBX was added before hypoxia and before reoxygenation.

Endothelial Cell Potassium Currents: Patch Clamp Recordings

Whole-cell patch clamp configurations were used to assess endothelial potassium
currents from MHECs. Prior to recordings, MHECs were washed twice with calcium-free
DMEM. Recording of potassium currents was performed in voltage-clamp mode using an Axon
Axopatch-200B amplifier, Axon Digidata 1550B A/D converter, and pClamp 11 software (all
provided by Molecular Devices, Foster City, CA). A bath solution consisted of 5 KCl, 140 NaCl,
2 MgCl2, 1 CaCl2, 10 HEPES, 30 glucose (all in mM, at pH 7.4, 22 degrees Celsius). Patch
pipettes were filled with pipette solution that consisted of 20 KCl, 1 MgCl2, 10 HEPES, 110 K-
Aspartate, 8.5 CaCl2, 0.01 Niflumic acid, and 10 BAPTA (all in mM, at pH 7.2, calculated free
calcium at 400 nmol/L). Stepping in 20 mV increments from a -50mV holding potential, using
150 ms test pulses in the range of -100 to 100mV, were used to obtain current-voltage potassium
current recordings. The sampling rate was 10 kHz, and low pass filter frequency was 2 kHz. For
current-time potassium current recordings, MHEC membrane potentials were held at 100mV.
The effects of the SK channel activator NS309 on whole cell potassium currents were examined.
To test specificity of SK channel activation, the SK2/SK3 channel blocker apamin (10^{-7} M) and
the SK4 blocker TRAM34 (10^{-6} M) were applied.

Chemicals

ADP, SNP, NS309, apamin, and TRAM34 were purchased from Sigma-Aldrich (St. Louis, MO).
Data Analysis and Statistics

Data is presented as mean +/- standard deviation (SD) of the mean. Percent relaxation of pre-constricted vessel diameters reflect degrees of microvascular responsiveness. The Shapiro-Wilk test was used to assess normality of the data. One- or two-way ANOVAs with post-hoc tests were used to analyze microvascular reactivity, patch-clamp, and PKC activity data using GraphPad Prism 7 (GraphPad Software, San Diego, CA). Values of p<0.05 were considered statistically significant.

RESULTS

Acute PKC inhibition with RBX improved Coronary Arteriolar Endothelium-Dependent Relaxation Responses following CP-H/R

Across all 3 groups, there were no significant differences in baseline microvessel diameter for harvested mouse coronary arterioles. Prior to vasodilatory response testing, microvessels were preconstructed using endothelin 1. NS309, ADP, and SNP all promoted a dose-dependent vasodilatory effects (Fig. 2-4, respectively). Coronary arteriolar responses to the endothelium dependent vasodilators NS309 (10^{-5} M, p = 0.0001) (Fig. 2) and ADP (10^{-4} M, p = 0.006) (Fig. 3) were significantly decreased in the CP-H/R group vs the sham control (Krebs buffer only) group. Treatment with the selective PKC beta inhibitor RBX significantly protected the coronary vasorelaxation responses of the CP-H/R + RBX group to NS309 (p = 0.004) (Fig. 2) and ADP (p = 0.031) (Fig. 3) compared with the untreated CP-H/R group. Curiously, there were no statistically significant differences in vessel relaxation responses to the endothelium-independent vasodilator SNP among all groups (Fig. 4).
Whole-cell potassium currents for sham control, CP-H/R, and CP-H/R + RBX MHECs can be seen in Figure 4A (Fig. 4, CP-H/R = microvessels undergoing hypoxia/re-oxygenation, RBX + CP-H/R = microvessels pretreated with RBX before hypoxia and re-oxygenation, RBX = Ruboxistaurin, PKC beta inhibitor). Application of the SK channel activator NS309 increased potassium currents in sham control (untreated with CP-H/R or RBX) and CP-H/R + RBX MHECs. These effects were abolished with co-application of the SK channel inhibitors TRAM34 and apamin, demonstrating that the NS309-induced potassium current is mediated by SK channel activity (Fig. 5A). NS309-sensitive potassium currents were significantly lower in CP-H/R vs sham control MHECs (p = 0.049) and CP-H/R vs CP-H/R + RBX MHECS (p = 0.0415) (Fig. 5B and 5C). Likewise, the apamin + TRAM34 sensitive potassium currents, which we have demonstrated are SK-mediated potassium currents, were significantly higher in CP-H/R + RBX MHECs vs CP-H/R MHECs (p = 0.0027) and in sham control vs CP-H/R MHECs (p = 0.0032) (Fig. 5D and 5E).

DISCUSSION

The family of SK channels contains four broad subtypes: SK1 (KCa2.1), SK2 (KCa2.2), SK3 (KCa2.3), and SK4 (IK1) (KCa3.1). SK 1 channels predominantly localize to neurons, although some reports suggest that it may also be found in atrial tissue [21][22]. SK2 may be found in cardiomyocytes, neurons, and endothelial cells [21][23][24]. SK3 and SK4 are strongly found on endothelial cells, where they contribute to EDHF-mediated vasodilation [25][26].
Although the specific identity of EDHF remains a matter of debate, most prevailing theories suggest that EDHF ultimately elevates intracellular calcium levels in endothelial cells.

Figure 6 provides an overview of SK channel-mediated endothelial hyperpolarization. Calcium binds to calmodulin, which itself can bind constitutively to the C termini of SK channels. This leads to a conformational change in the calmodulin-SK channel calmodulin binding domain that opens the SK channel pore, permitting efflux of potassium and endothelial hyperpolarization [27]. Endothelial hyperpolarization may then be transferred to vascular smooth muscle in several ways, including direct communication with vascular smooth muscle cells via myoendothelial gap junctions or activation of inward rectifier potassium channels and sodium-potassium ATPase on vascular smooth muscle cells [28].

Our group has previously provided evidence of altered SK channel activity following cardioplegic arrest and reperfusion following CPB. Post-CPB relaxation responses to endothelium-dependent vasodilators substance P and ADP, both of which have been implicated in EDHF/SK channel mediated endothelial hyperpolarization, and the SK channel activator NS309 were significantly reduced vs pre-CPB in human atrial microvessels [29]. Similarly, mouse small coronary artery endothelial cells undergoing CP-H/R exhibited reduced SK channel currents (patch clamp recordings) and intracellular calcium overload, which strongly correlated with the diminished SK currents [19].

Pretreatment of MHECs and human coronary artery endothelial cells with NS309 before CP-H/R has a protective effect on SK channel activity and preserves SK channel currents [7]. In line with these findings, the current study shows that RBX pretreatment can also protect SK channel currents in MHECs following CP-H/R, which is associated with preserved endothelium-dependent vasodilation. This provides further support for the notion that SK channel dysfunction
is a key mediator of general endothelial dysfunction following CP-H/R. Therefore, correcting SK channel dysfunction may subsequently provide significant therapeutic benefit.

PKC is an important regulator of SK channel activity through phosphorylation of SK channel-bound calmodulin [30]. PKC phosphorylation of SK-channel bound calmodulin significantly reduces the sensitivity of the calmodulin-SK channel complex to calcium, thereby reducing the channel’s open probability [30]. The specific direction of change in PKC expression following CP-H/R may vary depending on the specific isoform involved.

Earlier, we discussed studies suggesting that PKC delta and epsilon isoforms were increased in the myocardium following CP-H/R [13]. However, other studies report decreased PKC alpha activity in human coronary and skeletal microvessels following CP/CPB [31]. In an earlier study, inhibition of PKC alpha with safingol reduced phenylephrine induced vasoconstriction in human coronary and skeletal muscle arterioles following CP/CPB [31]. In contrast, activation of PKC alpha with tamoxifen (TMX) increased phenylephrine induced vasoconstriction.

In the current study, we show that inhibition of PKC beta with RBX improves microvascular relaxation in an endothelium-dependent manner, evidenced by the strong protection of ADP and NS309 induced relaxation responses following CP-H/R injury (cf. graphical abstract Figure 6). We can further link inhibition of PKC beta with protection of SK channel activity based on patch clamp results of preserved SK-dependent potassium currents in CP-H/R + RBX MHECs. Thus, inhibiting PKC beta with RBX may provide a novel approach for targeting SK channel hypoactivity following CP-H/R, mitigating against the development of postoperative endothelial dysfunction.
Importantly, our study showed that CP-H/R treatment did not affect microvascular relaxation responses to the endothelium-independent vasodilator SNP, and that RBX had no impact on SNP-mediated vasodilation after CP-H/R. This suggests that CP hypoxia-reoxygenation injury may spare endothelium-independent vasomodulatory systems, with damage predominantly dealt to endothelium-dependent systems through mechanisms such as altered PKC activity. Future studies will be needed to better characterize and elucidate the mechanisms of SNP and endothelium-independent vasodilation in the setting of CP-H/R.

Because vessels in our microvessel study were pre-dilated at a constant pressure of 40mmHg, we needed to pre-constrict vessels using endothelin-1 prior to studying vasodilatory responses. Endothelin-1 alone has been shown to activate PKC and reduce cardiomyocyte contractility during periods of ischemia and reperfusion [32]. Importantly, prior research has shown significant increases in endothelin-1 release in the myocardium and peripheral blood following cardioplegic arrest and CPB [33][34]. We have demonstrated previously that CP-CPB leads to activation of PKC alpha and beta in human coronary microvessels without the presence of endothelin-1 [13]. Our group has also shown that elevated endothelin-1 levels in conjunction with cardioplegic arrest/CPB synergistically increase PKC activity [35]. Our patch clamp studies also demonstrate here that selective PKC inhibition with RBX improves endothelial SK channel function in the absence of endothelin-1, which provides direct evidence for a non-endothelin-1 related role of PKC activity in cardioplegic hypoxia-reoxygenation.

A few limitations of the current study are worth mentioning. First, as mentioned above, because our protocol, which has been used in many previous investigations referred to in this study, involves pre-dilating vessels at 40 mmHg, we needed to use endothelin-1 to pre-constrict vessels prior to studying vasodilatory responses. We did not investigate which specific SK
channel subtype accounts for the preserved SK-dependent potassium currents following RBX treatment; more detailed studies of SK channel activity will be required. Next, the current study was done using MHECs from mouse models of CP-H/R injury; additional studies using human coronary microvessels will be needed to verify that the observations of this study translate appropriately to humans.

The absence of continuous sanguineous perfusion is another limitation of the mouse model, as it is very difficult to collect enough mouse blood to continuously perfuse vessels. A clinically relevant larger animal model, such as pig, should be used to test our in-vitro study in the future. This would also allow for examining the effect of PKC beta inhibition on post-cardiac arrest function in a large animal intact heart model. Future studies may also investigate potential roles for downstream effector molecules of PKC, such as ERK, in CP-H/R related endothelial dysfunction. Finally, it will be useful to see how well RBX protects endothelial function following CP-H/R in animal models or humans with pre-existing microvascular complications, such as diabetes or hypertension, who make up a significant portion of the cardiac surgery patient base.

In conclusion, acute protein kinase C beta inhibition with RBX improves endothelium-dependent vasodilation and endothelial SK channel function following CP-H/R injury (figure 7). This study provides important initial evidence for the clinical potential of RBX in patients prior to undergoing cardiac surgery involving CP/CPB for protection against postoperative endothelial dysfunction.
REFERENCES:

in a Swine Model of Heart Failure With Reduced Ejection Fraction. JACC. Basic to translational science, 2(6), 669–683. https://doi.org/10.1016/j.jacbts.2017.06.007

FIGURE LEGENDS

Figure 1. Experimental design for microvascular reactivity and endothelial experiment protocols.

A. Mouse coronary arterial microvessels (70-100um in internal diameter) from the left anterior descending artery dependent subepicardial region of the left ventricle were harvested and assigned to three groups: normoxia (sham controls), cardioplegic hypoxia-reoxygenation (1 hour), and cardioplegic hypoxia-reoxygenation (1 hour) with ruboxistaurin treatment. Following normoxia, cardioplegic hypoxia-reoxygenation, and/or ruboxistaurin treatment, microvascular responses to ADP, NS309, and SNP were measured. B. Mouse heart endothelial cells (MHECs) were harvested, and divided into the same three groups as were used for the microvascular reactivity study, with the key difference being 3 hours of cardioplegic hypoxia-reoxygenation. Following treatments, patch clamp methods were used to record whole cell potassium currents.

Figure 2. Coronary endothelial responses of mouse microvessels to endothelium-dependent vasodilator NS309. A. Dose-dependent vasodilation of sham control mouse microvessels and vessels undergoing CP-H/R with or without RBX treatment in response to the SK channel activator NS309 (10^{-9} – 10^{-5} M). B. Bar graph shows vasodilation response to NS309 10^{-5} M. CP-H/R = microvessels undergoing hypoxia/re-oxygenation, RBX + CP-H/R = microvessels pretreated with RBX before hypoxia and re-oxygenation. RBX = Ruboxistaurin, PKC beta inhibitor.

Figure 3: Coronary endothelial responses of mouse microvessels to endothelium-dependent vasodilator ADP. A. Sham control (no CP-H/R) and CP-H/R vessels with or without RBX treatment in response to the endothelium-dependent vasodilator ADP (10^{-9} – 10^{-4} M). B. Bar graph shows vasodilatory response to ADP 10^{-5} M. CP-H/R = microvessels undergoing hypoxia/re-oxygenation, RBX + CP-H/R = microvessels pretreated with RBX before hypoxia and re-oxygenation. RBX = Ruboxistaurin, PKC beta inhibitor.
Figure 4: Coronary endothelial responses of mouse microvessels to endothelium-independent vasodilator SNP. A. Sham control (no CP-H/R) and CP-H/R vessels with or without RBX treatment in response to the endothelium-independent vasodilator SNP ($10^{-9} - 10^{-4}$ M). B. Bar graph shows vasodilatory response to SNP 10^{-5} M. CP-H/R = microvessels undergoing hypoxia/re-oxygenation, RBX + CP-H/R = microvessels pretreated with RBX before hypoxia and re-oxygenation. RBX = Ruboxistaurin, PKC beta inhibitor.

Figure 5: RBX significantly increases SK channel currents of Mice heart endothelial cells (MHECs) in CP-H/R model. A, Representative traces of the whole cell currents of MHECs at holding potential of -50 mV and test potentials from -100 to $+100$ mV in 20 mV increments. B, whole-cell I–V relationships sensitive to NS309 (1μM) in MHECs of Control and CP-H/R with or without RBX (50nM) treatment. C, Box plots shows NS309-sensitive component of potassium current at $+100$ mV in MHECs of Control and treated with or without RBX. * $P = 0.0490$, Control (n=6) vs. CP-H/R (n=7); $P = 0.0415$, CP-H/R (n=7) vs. CP-H/R+RBX (n=6). D, whole-cell I–V relationships sensitive to TRAM34 (10μM) +Apamin (100nM) in MHECs of Control and with or without RBX treatment. E, Box plots shows TRAM34+Apamin-sensitive component of potassium current at $+100$ mV in MHECs of Control and treated with or without RBX (n=5/group). ** $P = 0.0032$, Control (n=6) vs. CP-H/R (n=7); $P = 0.0027$, CP-H/R (n=7) vs. CP-H/R+RBX (n=6). CP-H/R = microvessels undergoing hypoxia/re-oxygenation, RBX + CP-H/R = microvessels pretreated with RBX before hypoxia and re-oxygenation. RBX = Ruboxistaurin, PKC beta inhibitor.

Figure 6: Schematic of SK Channel Mediated Vasodilation. CP-H/R = cardioplegic hypoxia-reoxygenation. EC = Endothelial cell. PKC = protein kinase C. RBX = ruboxistaurin. SK channels are cyan on EC membranes. A. CP-H/R increases PKC activity, which phosphorylates SK channels. This results in decreased SK channel calcium sensitivity, and reduces SK channel opening, leading to reduced potassium currents and reduced endothelial hyperpolarization. This diminishes microvascular relaxation.
B. RBX inhibits PKC, preventing PKC-mediated SK channel activity inhibition, thereby promoting endothelial hyperpolarization and coronary microvascular smooth muscle relaxation.

Figure 7: Graphical Abstract. Depicts overview of premise, study, and key findings.
Acute Protein Kinase C Beta Inhibition Preserves Coronary Endothelial Function After Cardioplegic Hypoxia/Rexygenation
A. Microvascular Reactivity Experiment Protocol

B. Endothelial Cell Hypoxia-Reoxygenation Experiment Protocol
Acute Protein Kinase C Beta Inhibition Preserves Coronary Endothelial Function After Cardioplegic Hypoxia/Rexxygenation

PKC = Protein Kinase C; CP-H/R = cardioplegic hypoxia-reperfusion; RBX = ruboxistaurin; SK = small conductance calcium activated potassium channel; ADP and NS309 = endothelium-dependent vasodilators