Abstract
Objectives
Methods
Results
Conclusions
Graphical Abstract

Key Words
Abbreviations and Acronyms:
AUC (area under the curve), C/T ratio (consolidation/tumor ratio), FDG-PET/CT (fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography), GGO (ground-glass opacity), HR (hazard ratio), iMTV (image-based metabolic tumor volume), IRB (Institutional Review Board), iSUVmax (image-based maximum standardized uptake value), iTLG (image-based total lesion glycolysis), MTV (metabolic tumor volume), NSCLC (non–small cell lung cancer), OS (overall survival), RFS (recurrence-free survival), ROC (receiver operating characteristic), SUV (standardized uptake value), SUVmax (maximum standardized uptake value), TLG (total lesion glycolysis), TS-CT (thin-section computed tomography)
- Okada M.
- Nakayama H.
- Okumura S.
- Daisaki H.
- Adachi S.
- Yoshimura M.
- et al.
- Okada M.
- Nakayama H.
- Okumura S.
- Daisaki H.
- Adachi S.
- Yoshimura M.
- et al.
- Okada M.
- Nakayama H.
- Okumura S.
- Daisaki H.
- Adachi S.
- Yoshimura M.
- et al.
- Okada M.
- Nakayama H.
- Okumura S.
- Daisaki H.
- Adachi S.
- Yoshimura M.
- et al.
Patients and Methods
Inclusion Criteria
Thin-Section Computed Tomography Evaluation
Fluorine-18 Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography Examination and Harmonization Techniques
- Okada M.
- Nakayama H.
- Okumura S.
- Daisaki H.
- Adachi S.
- Yoshimura M.
- et al.
Fluorine-18 Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography Parameters
Pathologic Evaluation
Statistical Analyses
- Okada M.
- Nakayama H.
- Okumura S.
- Daisaki H.
- Adachi S.
- Yoshimura M.
- et al.
Results
Comparison of an Image-based Versus Mathematical-based Harmonization
- Okada M.
- Nakayama H.
- Okumura S.
- Daisaki H.
- Adachi S.
- Yoshimura M.
- et al.

- Okada M.
- Nakayama H.
- Okumura S.
- Daisaki H.
- Adachi S.
- Yoshimura M.
- et al.
Patient Characteristics
Variables | Total (N = 495) | iSUVmax | iMTV | iTLG | ||||||
---|---|---|---|---|---|---|---|---|---|---|
<2.3 (n = 214) | ≥2.3 (n = 281) | <2.7 cm3 (n = 134) | ≥2.7 cm3 (n = 361) | <7.7 (n = 239) | ≥7.7 (n = 256) | |||||
Age (median), y | 70 | 70 | 71 | ∗ | 70 | 70 | ns | 70 | 71 | ns |
Sex (male), n. (%) | 268 (54) | 100 (47) | 168 (60) | ∗∗ | 69 (51) | 199 (55) | ns | 117 (49) | 151 (59) | ∗ |
Smoking (yes), n. (%) | 291 (59) | 106 (50) | 185 (66) | ∗∗∗ | 71 (53) | 220 (61) | ns | 133 (56) | 158 (62) | ns |
Performance status (1), n. (%) | 57 (12) | 19 (9) | 38 (14) | ns | 15 (11) | 42 (12) | ns | 23 (10) | 34 (13) | ns |
GGO status (pure-solid), n. (%) | 324 (65) | 89 (42) | 235 (84) | ∗∗∗ | 93 (69) | 231 (64) | ns | 138 (58) | 186 (73) | ∗∗∗ |
Tumor size (>3 cm, ≤4 cm), n. (%) | 85 (17) | 18 (8) | 67 (24) | ∗∗∗ | 7 (5) | 78 (22) | ∗∗∗ | 11 (5) | 74 (29) | ∗∗∗ |
Histology (adenocarcinoma), n. (%) | 389 (79) | 204 (95) | 185 (66) | ∗∗∗ | 106 (79) | 283 (78) | ns | 212 (89) | 177 (69) | ∗∗∗ |
Operation (lobectomy) | 421 (85) | 169 (79) | 252 (90) | ∗∗ | 97 (72) | 324 (90) | ∗∗∗ | 186 (78) | 235 (92) | ∗∗∗ |
Nodal involvement (positive), n. (%) | 59 (12) | 10 (5) | 49 (17) | ∗∗∗ | 10 (7) | 49 (14) | ns | 10 (4) | 49 (19) | ∗∗∗ |
Lymphatic invasion (yes), n. (%) | 105 (21) | 14 (7) | 91 (32) | ∗∗∗ | 18 (13) | 87 (24) | ∗∗ | 27 (11) | 78 (30) | ∗∗∗ |
Vascular invasion (yes), n. (%) | 172 (35) | 15 (7) | 157 (56) | ∗∗∗ | 36 (27) | 136 (38) | ∗ | 43 (18) | 129 (50) | ∗∗∗ |
Pleural invasion (yes), n. (%) | 99 (20) | 15 (7) | 84 (30) | ∗∗∗ | 21 (16) | 78 (22) | ns | 28 (12) | 71 (28) | ∗∗∗ |
Pathological findings (high invasiveness), n. (%) | 216 (44) | 31 (14) | 185 (66) | ∗∗∗ | 45 (34) | 171 (47) | ∗∗ | 57 (24) | 159 (62) | ∗∗∗ |
Adjuvant chemotherapy (yes) | 99 (20) | 26 (12) | 73 (26) | ∗∗∗ | 14 (10) | 85 (24) | ∗∗ | 22 (9) | 77 (30) | ∗∗∗ |
Correlation Between Maximum Image-Based Standardized Uptake Value, Image-Based Metabolic Tumor Volume, and Image-Based Total Lesion Glycolysis and Clinicopathologic Findings
Correlation Between Maximum Image-Based Standardized Uptake Value, Image-Based Metabolic Tumor Volume, and Image-Based Total Lesion Glycolysis Values and Pathologic Grading
Total (N = 495) | iSUVmax | iMTV | iTLG | ||||
---|---|---|---|---|---|---|---|
Variables | <2.3 (n = 214) | ≥2.3 (n = 281) | <2.7 cm3 (n = 134) | ≥2.7 cm3 (n = 361) | <7.7 (n = 239) | ≥7.7 (n = 256) | |
Squamous cell carcinoma, n. (%) | 81 | 5 (6) | 76 (94) | 19 (23) | 62 (77) | 19 (23) | 62 (77) |
Adenocarcinoma, n. (%) | 389 | 204 (52) | 185 (48) | 106 (27) | 283 (73) | 212 (54) | 177 (46) |
Adenocarcinoma subtypes, n. (%) | |||||||
Predominant pattern grade 1 | 93 | 80 (86) | 13 (14) | 32 (34) | 61 (66) | 67 (72) | 26 (28) |
AIS | 13 | 12 (92) | 1 (8) | 9 (69) | 4 (31) | 11 (85) | 2 (15) |
MIA | 25 | 25 (100) | 0 (0) | 13 (52) | 12 (48) | 22 (88) | 3 (12) |
Lepidic | 55 | 43 (78) | 12 (22) | 10 (18) | 45 (82) | 34 (62) | 21 (38) |
Predominant pattern grade 2 | 214 | 92 (43) | 122 (57) | 46 (21) | 168 (79) | 101 (47) | 113 (53) |
Papillary | 132 | 64 (48) | 68 (52) | 32 (24) | 100 (76) | 65 (49) | 67 (51) |
Acinar | 82 | 28 (34) | 54 (66) | 14 (17) | 68 (83) | 36 (44) | 46 (56) |
Chi-square test for G1 vs G2 | P < .001 | P = .022 | P < .001 | ||||
Predominant pattern grade 3 | 48 | 8 (17) | 40 (83) | 13 (27) | 35 (73) | 18 (37) | 30 (63) |
Micropapillary | 12 | 3 (25) | 9 (75) | 4 (33) | 8 (67) | 6 (50) | 6 (50) |
Solid | 36 | 5 (14) | 31 (86) | 9 (25) | 27 (75) | 12 (33) | 24 (67) |
Chi-square test for G2 vs G3 | P < .001 | P = .445 | P = .263 | ||||
Variants | 34 | 24 (71) | 10 (29) | 15 (44) | 19 (56) | 26 (76) | 8 (24) |
Others, n. (%) | 25 | 5 (20) | 20 (80) | 9 (36) | 16 (64) | 8 (32) | 17 (68) |
Correlation Between Maximum Image-Based Standardized Uptake Value, Image-Based Metabolic Tumor Volume, and Image-Based Total Lesion Glycolysis Values and Prognosis

Variables | RFS | OS | ||||||
---|---|---|---|---|---|---|---|---|
Univariate | Multivariate | Univariate | Multivariate | |||||
HR (95% CI) | P value | HR (95% CI) | P value | HR (95% CI) | P value | HR (95% CI) | P value | |
Age (≥70 y vs <70 y) | 1.42 (1.00-2.02) | .048 | 1.31 (0.92-1.88) | .140 | 1.86 (1.15-2.99) | .011 | 1.67 (1.02-2.73) | .041 |
Sex (male vs female) | 1.76 (1.23-2.53) | .002 | 1.51 (0.95-2.39) | .079 | 2.87 (1.69-4.88) | <.001 | 2.45 (1.29-4.65) | .006 |
Smoking (yes vs no) | 1.53 (1.06-2.21) | .022 | 0.97 (0.61-1.53) | .885 | 1.71 (1.05-2.81) | .032 | 0.85 (0.47-1.54) | .598 |
Performance status (1 vs 0) | 1.48 (0.92-2.39) | .104 | 1.29 (0.66-2.51) | .458 | ||||
GGO status (pure-solid vs part-solid) | 4.49 (2.66-7.57) | <.001 | 2.49 (1.41-4.39) | .002 | 5.72 (2.62-12.46) | <.001 | 2.75 (1.19-6.39) | .018 |
Tumor size (>3 cm, ≤4 cm vs ≤3 cm) | 2.88 (1.99-4.19) | <.001 | 1.87 (1.25-2.80) | .002 | 2.59 (1.58-4.24) | <.001 | 1.72 (1.01-2.94) | .047 |
Histology (adenocarcinoma vs nonadenocarcinoma) | 0.50 (0.35-0.72) | <.001 | 1.17 (0.78-1.75) | .461 | 0.33 (0.21-0.53) | <.001 | 0.87 (0.52-1.47) | .612 |
Operation (lobectomy vs sublobar) | 1.48 (0.87-2.54) | .151 | 0.92 (0.49-1.70) | .918 | ||||
Adjuvant chemotherapy (yes vs no) | 2.09 (1.45-3.02) | <.001 | 1.53 (1.04-2.26) | .033 | 1.88 (1.16-3.06) | .011 | 1.48 (0.88-2.48) | .142 |
iSUVmax (≥2.3 vs <2.3) | 5.64 (3.47-9.18) | <.001 | 3.02 (1.67-5.46) | <.001 | 7.21 (3.46-15.02) | <.001 | 3.66 (1.55-8.65) | .003 |
iMTV (≥2.7 cm3 vs <2.7 cm3) | 1.48 (0.98-2.25) | .065 | 1.16 (0.68-1.97) | .589 | ||||
iTLG (≥7.7 vs <7.7) | 3.22 (2.18-4.76) | <.001 | 1.29 (0.80-2.07) | .300 | 3.07 (1.82-5.17) | <.001 | 1.09 (0.58-2.02) | .793 |
- Okada M.
- Nakayama H.
- Okumura S.
- Daisaki H.
- Adachi S.
- Yoshimura M.
- et al.

Variables | RFS | OS | ||||||
---|---|---|---|---|---|---|---|---|
Univariate | Multivariate | Univariate | Multivariate | |||||
HR (95% CI) | P value | HR (95% CI) | P value | HR (95% CI) | P value | HR (95% CI) | P value | |
Age (≥70 y vs <70 y) | 1.12 (0.71-1.77) | .613 | 2.12 (1.10-4.10) | .026 | 2.16 (1.12-4.18) | .022 | ||
Sex (male vs female) | 1.30 (0.82-2.06) | .260 | 1.84 (0.95-3.57) | .069 | ||||
Smoking (yes vs no) | 1.06 (0.66-1.68) | .817 | 0.81 (0.43-1.53) | .517 | ||||
Performance status (1 vs 0) | 1.17 (0.62-2.22) | .623 | 1.11 (0.43-2.85) | .829 | ||||
Tumor size (>3 cm, ≤4 cm vs ≤3 cm) | 1.58 (0.91-2.74) | .108 | 1.38 (0.63-3.02) | .416 | ||||
Operation (lobectomy vs sublobar) | 1.34 (0.64-2.78) | .439 | 0.75 (0.31-1.80) | .519 | ||||
Adjuvant chemotherapy (yes vs no) | 1.71 (1.05-2.80) | .033 | 1.34 (0.79-2.26) | .274 | 1.58 (0.80-3.13) | .192 | ||
iSUVmax (≥2.3 vs <2.3) | 3.25 (1.79-5.92) | <.001 | 3.18 (1.58-6.41) | .001 | 2.67 (1.18-6.07) | .019 | 2.72 (1.20-6.18) | .017 |
iMTV (≥2.1 cm3 vs <2.1 cm3) | 1.27 (0.72-2.23) | .415 | 1.08 (0.49-2.37) | .844 | ||||
iTLG (≥7.7 vs <7.7) | 1.88 (1.18-3.01) | .008 | 0.93 (0.53-1.65) | .816 | 1.61 (0.84-3.10) | .150 |

Discussion

Study Limitations
Conclusions
Conflict of Interest Statement
Supplementary Data
- STROBE-checklist
Appendix 1

- Okada M.
- Nakayama H.
- Okumura S.
- Daisaki H.
- Adachi S.
- Yoshimura M.
- et al.

- Okada M.
- Nakayama H.
- Okumura S.
- Daisaki H.
- Adachi S.
- Yoshimura M.
- et al.

- Okada M.
- Nakayama H.
- Okumura S.
- Daisaki H.
- Adachi S.
- Yoshimura M.
- et al.





- Okada M.
- Nakayama H.
- Okumura S.
- Daisaki H.
- Adachi S.
- Yoshimura M.
- et al.
References
- A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical IA lung cancer (Japan Clinical Oncology Group 0201).J Thorac Oncol. 2011; 6: 751-756
- Radiographically determined noninvasive adenocarcinoma of the lung: survival outcomes of Japan Clinical Oncology Group 0201.J Thorac Cardiovasc Surg. 2013; 146: 24-30
- Preoperative staging of non-small-cell lung cancer with positron-emission tomography.N Engl J Med. 2000; 343: 254-261
- Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: systematic review.Lancet Oncol. 2004; 5: 531-540
- Positron-emission tomography and assessment of cancer therapy.N Engl J Med. 2006; 354: 496-507
- Volume-based parameters of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography improve outcome prediction in early-stage non-small cell lung cancer after surgical resection.Ann Surg. 2013; 257: 364-370
- Associations among bronchioloalveolar carcinoma components, positron emission tomographic and computed tomographic findings, and malignant behavior in small lung adenocarcinomas.J Thorac Cardiovasc Surg. 2007; 133: 1448-1454
- Value of integrated positron emission tomography revised using a phantom study to evaluate malignancy grade of lung adenocarcinoma: a multicenter study.Cancer. 2010; 116: 3170-3177
- Frequent EGFR mutations and better prognosis in positron emission tomography-negative, solid-type lung cancer.Clin Lung Cancer. 2022; 23: e60-e68
- Solid tumor size on high-resolution computed tomography and maximum standardized uptake on positron emission tomography for new clinical T descriptors with T1 lung adenocarcinoma.Ann Oncol. 2013; 24: 2376-2381
- Indications for sublobar resection of clinical stage IA radiologic pure-solid lung adenocarcinoma.J Thorac Cardiovasc Surg. 2017; 154: 1100-1108
- Multicenter analysis of high-resolution computed tomography and positron emission tomography/computed tomography findings to choose therapeutic strategies for clinical stage IA lung adenocarcinoma.J Thorac Cardiovasc Surg. 2011; 141: 1384-1391
- Performance characteristics of a newly developed PET/CT scanner using NEMA standards in 2D and 3D modes.J Nucl Med. 2004; 45: 1734-1742
- Harmonized pretreatment quantitative volume-based FDG-PET/CT parameters for prognosis of stage I-III breast cancer: multicenter study.Oncotarget. 2021; 12: 95-105
- Harmonized pretreatment quantitative volume-based (18)F-FDG PET/CT parameters for stage IV breast cancer prognosis. Multicenter study in Japan.Hell J Nucl Med. 2020; 23: 272-289
- Usefulness of semi-automatic harmonization strategy of standardized uptake values for multicenter PET studies.Sci Rep. 2021; 11: 8517
- EANM/EARL FDG-PET/CT accreditation - summary results from the first 200 accredited imaging systems.Eur J Nucl Med Mol Imaging. 2018; 45: 412-422
- EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies.Eur J Nucl Med Mol Imaging. 2017; 44: 17-31
- International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma.J Thorac Oncol. 2011; 6: 244-285
- A grading system for invasive pulmonary adenocarcinoma: a proposal from the international association for the study of lung cancer pathology committee.J Thorac Oncol. 2020; 15: 1599-1610
- The IASLC Lung Cancer Staging Project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer.J Thorac Oncol. 2016; 11: 39-51
- Prognostic impact of a ground glass opacity component in the clinical T classification of non-small cell lung cancer.J Thorac Cardiovasc Surg. 2017; 154: 2102-2110.e1
- Influence of ground glass opacity and the corresponding pathological findings on survival in patients with clinical stage I non-small cell lung cancer.J Thorac Oncol. 2018; 13: 533-542
- Lung adenocarcinomas manifesting as radiological part-solid nodules define a special clinical subtype.J Thorac Oncol. 2019; 14: 617-627
- Distinct prognostic factors in patients with stage I non-small cell lung cancer with radiologic part-solid or solid lesions.J Thorac Oncol. 2019; 14: 2133-2142
- The influence of clinical T factor on predicting pathologic N factor in resected lung cancer.Ann Thorac Surg. 2019; 108: 1080-1086
- Ground-glass opacity is a strong prognosticator for pathologic stage IA lung adenocarcinoma.Ann Thorac Surg. 2019; 108: 249-255
- “Early” peripheral lung cancer: prognostic significance of ground glass opacity on thin-section computed tomographic scan.Ann Thorac Surg. 2002; 74: 1635-1639
- Peripheral lung adenocarcinoma: correlation of thin-section CT findings with histologic prognostic factors and survival.Radiology. 2001; 220: 803-809
- Multicentre analysis of PET SUV using vendor-neutral software: the Japanese Harmonization Technology (J-Hart) study.EJNMMI Res. 2018; 8: 83
- The conclusion of papers published in the Journal should be supported by an appropriate statistical analysis.J Thorac Cardiovasc Surg. 2014; 148: 2479
- A systematic approach to initial data analysis is good research practice.J Thorac Cardiovasc Surg. 2016; 151: 25-27
- Presence of a ground-glass opacity component is the true prognostic determinant in clinical stage I NSCLC.JTO Clin Res Rep. 2022; 3: 100321
- Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer.N Engl J Med. 2022; 386: 1973-1985
- Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial.Lancet. 2021; 398: 1344-1357
Article info
Publication history
Publication stage
In Press Journal Pre-ProofFootnotes
This study was supported by grants-in-aid for scientific research from the Japan Society for the Promotion of Science (Grant 20K17763 to Dr Hamada, Grant 19K08187 to Dr Kitajima, Grant 22K07291 to Dr Suda, Grant 22K08986 to Dr Soh, and Grant 20H03773 to Dr Mitsudomi).
Institutional Review Board (IRB) approval: Kindai University Faculty of Medicine, IRB Number 31 to 172 (November 26, 2019); Hyogo Medical University School of Medicine, IRB Number 3219 (May 24, 2019); National Cancer Center Hospital, IRB Number 2019 to 082 (August 17, 2019); Nippon Medical School Hospital, IRB Number B-2019 to 065 (November 8, 2019).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy