Reply: A New Shared Vision on Survival Analysis: Good News from Baltimore

Alvise Guariento, MD¹,§, Ilias P. Doulamis, MD, PhD¹, Steven J. Staffa, MS², Laura Gellis, MD³, Nicholas A. Oh, MD¹, Takashi Kido, MD, PhD¹, John E. Mayer, MD¹, Christopher W. Baird, MD¹, Sitaram M. Emani, MD¹, David Zurakowski, MS, PhD², Pedro J. del Nido, MD¹, Meena Nathan, MD, FRCS, MPH¹,§.

Affiliations:
¹Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
²Departments of Anesthesiology and Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
³Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts

Conflicts of Interest: None
Sources of Funding: None
Article word count: 336

Corresponding author:
Alvise Guariento, MD§
Meena Nathan, MD, FRCS, MPH§
Department of Cardiac Surgery
Boston Children’s Hospital
Department of Surgery, Harvard Medical School
An evolution of survival analysis is coming: good news for the cardiac surgical community.
We read with interest the letter from Van den Eynde and colleagues1. We must admit that it is quite difficult to answer such a beautiful explanation of the main concept of our paper. In recent times, an increasing number of articles (most notably in the \textit{Journal}) have used competing risk regression analysis to determine the impact of competing events such as mortality. As mentioned in our study, the new model combines this approach with modulated renewal analysis. This combination allows control of competing events and estimates the cause-specific probability of the event of interest at a particular time, while allowing for repeated events during follow-up2.

Van den Eynde and colleagues have clearly pointed out the most important advantages of this modeling technique when compared to classic Kaplan-Meier survival estimates and Cox regression analysis. Limiting analysis to the first occurring event at follow-up results in failure to account for subsequent events and the interactions of these with competing variables, particularly important when several events happen during the follow-up period3. Kaplan-Meier and Cox regression models assume independence when there can be multiple causes for the event (so informative censoring is needed to avoid biased estimated of risk).

As noted by some of the reviewers of our article during its peer-review process, modulated renewal is a statistical method that was brilliantly described by Kalbfleisch and Prentice4. The terminology derives from industrial analyses (with "modulated renewal" characterized by the terms "good as new", "better than new" and "worse than new"). However, while some groups (such as the University of Alabama) have been pioneers in its use, modulated renewal analysis has not been widely applied in the context of cardiac surgery research. Therefore, the combination of modulated renewal and competing risk regression analysis can be considered a novelty in our field.

It is with great enthusiasm that we welcome the words of Van den Eynde and colleagues. A great deal of effort will be needed in the coming years to promote the evolution of statistical analysis to
keep pace with increasing use of big data and the growth of medical technology. Good news from Baltimore! A new shared vision on survival analysis is coming. (Figure 1).
FIGURES

Figure 1: An evolution of survival analysis is coming: good news for the cardiac surgical community.
REFERENCES

