Commentary: Preventing postoperative surgical site infections in cardiac surgery: Just follow the guidelines

Harold L. Lazar, MD

PII: S2666-2736(21)00370-3
DOI: https://doi.org/10.1016/j.xjon.2021.09.049
Reference: XJON 395

To appear in: JTCVS Open

Received Date: 14 September 2021
Revised Date: 14 September 2021
Accepted Date: 24 September 2021

Please cite this article as: Lazar HL, Commentary: Preventing postoperative surgical site infections in cardiac surgery: Just follow the guidelines, JTCVS Open (2021), doi: https://doi.org/10.1016/j.xjon.2021.09.049.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2021 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Commentary: Preventing postoperative surgical site infections in cardiac surgery: Just follow the guidelines

Harold L. Lazar, MD
From the Division of Cardiac Surgery, the Boston University School of Medicine, Boston, MA
The author reports no Conflict of Interest or Sources of Support

Article word count:

Address all correspondence to:
Harold L. Lazar, MD
80 E. Concord Street
Boston, MA 02118
Tele: 617-833-0452
Email: harold.l.lazar@gmail.com
CENTRAL MESSAGE: Following the current STS and AATS guidelines is the best way to prevent SSI in cardiac surgery.

CENTRAL PICTURE LEGEND: Harold L. Lazar, MD

In this edition of JTCVS online, Takami et al report the impact of preoperative nasopharyngeal cultures (NCx) on surgical site infections (SSI) after cardiac surgery (1). In their study, a positive preop NCx was an independent risk factor for a postoperative SSI. However, the pathogen isolated in preop NCxs was infrequently isolated from postoperative SSIs. The authors concluded that in addition to screening for Methicillin Resistant Staphylococcus aureus (MRSA), preoperative NCx may be useful to predict SSI following cardiac surgery performed via a sternotomy.

Unfortunately, there are numerous issues with this study that limit the conclusions that can be made. The most serious flaw was the failure of the authors to follow the recommendations of the STS guidelines on the use of perioperative antibiotics (2,3) and the AATS guidelines for the prevention and treatment of sternal wound infections (4). Adherence to these guidelines has resulted in an incidence of deep sternal wound infections (DSWI) of 0.3-0.5% in the STS Database (5). The incidence of chest wound SSI in this current study was 1.7%; nearly 3-4 times higher! Other areas of non-adherence to the STS and AATS guidelines in this study included:

***Mupiricin ointment was used for only 3 days instead of the recommended 5 day course.

***Patients did not receive additional antibiotic coverage for gram (-) organisms when only Vancomycin was used as the sole perioperative antibiotic. It is the recommendation of both the STS and AATS guidelines that an aminoglycoside be added for one preoperative and
postoperative dose when Vancomycin is used as the primary prophylactic antibiotic in order to achieve optimal gram (-) coverage (2-4). This may explain the isolation of Enterococcus and Pseudomonas species that were seen in both the pharyngeal and chest SSI cultures in patients with a DSWI. Furthermore, when enterococcus and pseudomonas species were isolated preop, no attempt was made to broaden the perioperative coverage against these pathogens, and more importantly, to identify whether they were associated with infections in other sites; specifically the pulmonary and genitourinary systems.

***The authors removed bone wax prior to closing the sternum to decrease the risk of infection. However, it is unclear as to how you can remove all the bone wax without causing bleeding from the sternal edges once it has been applied. Bone wax should be avoided in all sternotomies; a Class III recommendation in the AATS guidelines (4). Vancomycin paste has been shown to eliminate DSWI (6) and its use in all sternotomy patients is now a Class I recommendation in the AATS guidelines (4). It is also hemostatic.

The incidence of the use of postop tracheostomies in this study was 8.3%; which is higher than at most centers; and was identified as a risk factor for SSI. The authors plan to limit their use of all types of tracheostomies in their practice. In view of their results, the ‘liberal” use of tracheostomies cannot be considered a “best practice” for postop cardiac surgery patients.

In view of these limitations, what can we conclude from this study? A positive NCx for organisms other than staph species should prompt a thorough search for other sites of infections in patients undergoing cardiac surgery, and the institution of a broader spectrum of antibiotics to treat these organisms. The STS and AATS guidelines were instituted to eliminate postop cardiac surgical SSIs. The study by Takami etal reminds us what happens when these guidelines are not followed.
REFERENCES


